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Abstract 

There is increasing demand for efficient methods to identify meaningful technological domains that can 

inform the study of technologies and their evolution. This paper shows how community detection 

analysis of a network of patent technology codes (IPC) can be used to classify a large and sparse patent 

database in a fully automated and unsupervised way. Light Emitting Diode (LED) has been selected as a 

test-bed of the methodology. As a multi-purpose technology, LED evolved for decades spanning several 

technology fields, before finding mass application in the general lighting industry. The analysis has been 

conducted over the largest database of patents related to LED ever used in the literature, covering over 

400 thousand patent documents filed in 77 patent offices in the world between 1962 and 2018. VOS and 

Louvain community detection algorithms have been applied to find the technology domains around 

which the patent activity concentrated across the long and multi-directional historical evolution of LED. 

Results have been compared with other studies and approaches, in order to highlight the advantages of 

the proposed methodology. IPC-based community detection proves particularly useful to classify other 

technologies characterised by a meandering evolutionary process across several domains. It does not 

require particularly advanced data science skills and allows the flexibility of choosing the level of 

granularity in the classification by adjusting the resolution parameter.  

 

Keywords: Patent network; Technology domains; Community detection; Multi-purpose technologies; 

LED 
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1 Introduction 

There is rich literature that analyses technological evolution as a key driver of economic and societal 

change. Building on the initial contribution by Schumpeter (1934) on technological change and the impact 

of invention, innovation and diffusion processes on the economy, recent waves of empirical research 

have focused on the evolutionary dynamics of technological change (Nelson and Winter, 2004). These 

models have the concepts of technological paradigms and trajectories at the basis of their interpretation 

of the economic systems (Dosi, 1982). Technology develops through continuous incremental innovations, 

with new innovation building upon previous knowledge and extending existing ideas. Technology 

advance can follow different paths of engineering improvements and technical solutions, which can be 

partially autonomous one from the other (Dosi and Nelson, 2013; Verspagen, 2007).  

The empirical research in this field has benefited from the valuable source of information provided by 

patent documents. The use of patents as an indicator of innovative activities is quite established in the 

literature (Yoon and Kim 2012; Grupp, 1990; Griliches, 1990). Information on the technological content 

can be extracted from patent applications and analysed to study the nature of technologies. The 

literature provides many examples of studies applying patent analysis to understand the development 

of particular technologies by cumulatively measuring the number of patents for specific technical fields 

(among which, Singh et al., 2021; Epicoco, 2013; Martinelli, 2012; Nomaler and Verspagen, 2019; Rizzi et 

al., 2014; Verspagen, 2007). Also, patent citations can be used as a proxy for knowledge flows and enable 

to map the diffusion of previous inventions over time, countries, and across technologies as well 

(Verspagen, 2007).  

When technology develops along a meandering process and finds different applications in the course of 

its evolution, it is important to be able to identify and track the different technology domains spanned 

over time. A technological domain is defined as the set of artefacts (systems, processes, algorithms, 

devices) that achieve the same technological function using the same knowledge and scientific principles 

(Magee et al., 2016; Benson and Magee, 2015). The detection and analysis of these technological domains 

are of interest for many research areas: the historical analysis of the technology (e.g. Verspagen, 2007), 

the prediction of emerging technologies (Zhou et al., 2019; Érdi et al., 2013), the economics of innovation 

and industry dynamics (Marsili and Verspagen, 2002;  Verspagen, 1991), market research and strategic 

management (Greve, 2000; King and Tucci, 2002; Narasimhan and Zhang, 2000; Ernst, 2003; Chang, 

2012).  

However, the pervasiveness of some multi-purpose or general-purpose (Bresnahan and Trajtenbergb, 

1995; Lipsey et al., 2005) makes it more difficult to find meaningful and comprehensive classifications of 

technology domains to study (Jun et al., 2014; Bissmark and Wärnling, 2017). Light-Emitting Diode (LED) 

is an example of such technology. Its development builds on improvements in several technology 

domains, including semiconductors, chemical components, optical elements; also, since when it was 

discovered in the 1960s, the technology found applications in many fields, such as computer indicators, 

traffic lights, vehicles, printing devices, displays, lamps for general lighting (Sanderson and Simons, 2014). 

Identifying all the relevant technology domains associated with LED development is not trivial, not only 

because of ambiguous boundaries between technical fields, but also because of the large number of 

patents related to LED, which requires a great deal of time and manpower for data extraction and 

processing (Benson and Magee, 2015; Choi and Hwang, 2013). Different classifications have been 

produced by previous studies. All of them were based on patent analysis but adopted different 

classification methods. (Boyack et al., 2009; Chen et al., 2016; Choi and Hwang, 2014; Gridlogics 

Technologies Pvt Ltd, 2010; iRunway, 2014; Park and Jun, 2017; Simons and Sanderson, 2011).  

This paper proposes an alternative classification of the technology domains related to LED, which differs 

from the existing literature by two main features: first, it is based on a very extensive database of over 
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400 thousand LED-related patent families, much larger than any previous study; second, it results from 

unsupervised community detection analysis applied to the network of technological codes (according to 

the International Patent Classification – IPC) included in the patent database. In other terms, the co-

occurrence of IPC subclasses in the patent database has been analysed with community detection 

algorithms to find the homogeneous technology fields associated with LED. This approach is different 

from other grouping methods used in previous studies on LED and produces partially different results. 

We relied on the VOS and Louvain algorithms as two examples of community detection methods. We 

have chosen them not only because of their popularity and suitability to classify large networks, but also 

because they are embedded in existing programme packages, thus making them extremely easy-to-use 

also to use for researchers with no advanced data science skills.   

This paper does not seek a better or more truthful classification of LED technology domains than those 

proposed by previous research. Instead, the objective is to show how community analysis of technology 

codes can achieve a meaningful and fine-grained classification of LED patents through a fully automated 

and data-driven classification approach. This methodology proves particularly useful to classify a very 

large dataset of patents referring to a heterogeneous technology, which developed through specific 

technology domains, whose number and definition are unknown a priori. As such, the findings of this 

study can be relevant when analysing other complex innovations crossing many application fields, such 

as software, biotechnology, telecommunication, electronic equipment or computer industries (Hall and 

Ziedonis, 2001; Ziedonis, 2004; Noel and Schankerman, 2013; Bessen and Hunt, 2007; Heller and 

Eisenberg, 1998; Martinelli, 2012; Fontana et al., 2009; Bresnahan and Greenstein, 2003). Moreover, the 

possibility to derive more or less detailed classifications by simply adjusting the resolution parameter of 

the partitioning algorithm is another key advantage offered by this methodology.  

The paper is structured as follows. Section 2 reviews some previous studies of technological development 

and classification which rely on patent analysis, discussing the advantages and limitations of various 

classification methods. It also shows the classifications of LED technologies provided by previous studies, 

based on different methods of analysis. Section 3 outlines the overall approach and its application to LED 

technology, including the construction of the patent dataset and the IPC network, and the use of 

community detection algorithms. Section 4 provides some descriptive analysis of the results. A discussion 

on the robustness of results and a comparison with other classification methods are presented in Section 

5. Finally, Section 6 concludes, by summarising the advantages of the proposed classification method.  

2 Literature review 

2.1 Identifying technology domains: why is it important? 

Our research contributes to the recent streams of literature on technological change, centred around 

evolutionary approaches. Evolutionary economists consider technological change as a complex 

phenomenon, which proceeds through an evolutionary process along different trajectories (Dosi, 1982). 

The trajectory tends to be persistent and cumulative, since each new innovation builds upon previous 

knowledge and extends existing ideas. The main trajectory can also take different paths of engineering 

improvements and technical solutions which are partially autonomous one from the other (Nelson 1995; 

Verspagen, 2007). While technological trajectories correspond to incremental technological innovation, 

Dosi refers to the concept of technological paradigm shift to indicate a major breakthrough in knowledge 

development, both in the sense that it is a radical break with the past, and in terms of its reach, i.e., it 

affects a wide variety of research and industrial processes. The paradigm is set out by a small number of 

basic innovations, which eventually dominate the technological developments (or trajectory) for a long 

time, being constantly altered by incremental innovations (Dosi, 1982; Sahal, 1981; 1985; Dosi and 

Nelson, 2010).  
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Drawing on the concept of technological paradigm from the evolutionary literature, and from the idea of 

long waves and short waves to describe the frequency of major discoveries (Jovanovic and Rob, 1990), 

Bresnahan and Trajtenbergb (1995) introduced the notion of General-Purpose Technology (GPT). As 

formally defined by Lipsey et al. (2005), GPTs are characterised by some key features, the most important 

of which being their pervasiveness in the economy, due to the possible use in a vast number of products 

and applications, and their technological dynamism, reflected in several incremental improvements 

throughout their life time.  

Examples of prevailing technological paradigms, or GPT, that are often mentioned in the literature, 

include electricity, semiconductors, steam power, microelectronics and information technologies (Dosi 

and Nelson, 2013). Even if some studies have challenged the possibility to trace clear-cut boundaries 

between radical and incremental innovations (Bekar et al., 2018; Moser and Nicholas, 2004; Korzinov and 

Savin, 2016), it is undisputed that not all technologies are alike. Some technologies show a higher degree 

of pervasiveness, a more complex evolution over time, and applications to multiple and diversified 

domains than others.  

Light-emitting diode (LED) is an example of relatively more complex and pervasive technology. LED 

technology shows a long evolution through a continuous and incremental accumulation of innovation 

(Sanderson and Simons, 2014). The technology evolved thanks to significant improvements in the fields 

of chemistry, semiconductor materials, optical components, electronics, and simultaneously to its 

application in several domains (signalling, cameras, photo and printing, traffic lights, vehicles, 

horticulture, displays, horology, domestic and outdoor lighting, etc.). When thinking of the LED as a 

technology landscape populated by different innovations (Fleming and Sorenson, 2004; Kauffman et al., 

2000), it is important to identify the multiple technology domains along which the LED evolved in order 

to investigate several aspects of its technological change. From a retrospective point of view, this is useful 

to analyse the breadth (different domains spanned) and depth (different innovations and novel 

recombinations in each domain) of technological improvements. From a forward-looking perspective, it 

can be used to map and examine the existing or emerging technological positions and guide the firms’ 

decisions about where to position themselves in this landscape. In general, the distribution of 

innovations across the technology space is not uniform, but tends to agglomerate into clusters of 

adjacent technology positions (Aharonson and Schilling, 2016). 

However, the question of how such domains can be identified is not trivial for technologies characterised 

by a long evolution across many different domains, including very specific niches. Differently from 

innovations deployed in a single narrow domain, LED builds on so many different technologies and its 

applications are so numerous that its landscape is more difficult to navigate. The methodology presented 

in this paper aims to achieve an accurate and meaningful mapping of the LED technology landscape so 

as to make its navigation easier.  

2.2 Technology classification methods  

Patent data provide a primary data source for scholars interested in studying the development of 

technological knowledge (e.g. Strumsky et al., 2012). Patents contain various types of content: the patent 

title, abstract, claims and description, the name of the investor, the assignee, citation information and 

others. A wealth of literature has taken advantage of the content of the patent applications to study the 

characteristics and evolution of technology over time. Two main types of information are generally used 

to analyse the patents: i) the description of the patent content as included in the patent’s titles and 

abstract, or ii) the alphanumeric code assigned by the patent office examiner to classify the patent 

according to a specific classification system. Information from both sources can be used to classify 

patents.  
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The classification methods can be based on an expert review of patents or on automated data processing 

techniques. The choice of the classification approach cannot disregard the number of patents to classify 

and the type of technology under investigation. When dealing with small numbers of patents and with 

technologies with a narrow application domain, a manual classification can be feasible and produce 

accurate and relevant results, provided that the reviewer has sufficient expertise in the technology to be 

able to understand the patent documents and properly classify the technology into subgroups. 

Conversely, automated classification procedures are more suitable for very large databases and GPT / 

multi-purpose technologies. A classification algorithm, either based on clustering or community 

detection methods,1 can be used to screen the content of a very large number of data and find an optimal 

way to partition them. In these cases, an expert can be asked to review only a sample of attributions and 

provide a general validation of the results, but not to classify the entire database.  

In what follows, some of the main patent classification methods used in the extant literature are 

mentioned. They include either fully automated data analysis techniques or a mix of manual and 

automated procedures.  

The studies that consider the patents’ titles and abstracts to find agglomerations of similar technologies 

apply text mining and semantic analysis algorithms. A more detailed and technical review of these 

methods can be gathered from Tseng et al. (2007), Wang et al. (2018) and Hu et al. (2018). In general, 

scholars have used semantic analysis to analyse patent trends and forecast technological development 

in particular domains (Song et al., 2017; Park and Jun, 2017; Madani and Weber, 2016; Smith and Agrawal, 

2015; Joung and Kim, 2017; Altuntas et al. 2015; Wu, 2016; Rizzi et al. 2014; Yoon and Park, 2004). The 

semantic analysis was also applied to help companies identify prior inventions and avoid patent 

infringements (Yoon and Park, 2004, 2014, Yoon and Kim, 2011) and to monitor technological 

development to identify novelty innovations (Bergeaud et al., 2017; Gerken and Moehrle, 2012). Arts et 

al. (2018) used a text-mining technique based on common keywords to develop a measure of 

technological similarity, thereby identifying classes of similar patents. Patent data were processed by 

concatenating the title and abstract and deriving a collection of unique keywords for each patent that 

represents its technical content. Bergeaud et al. (2017) developed a sophisticated and fully automated 

(unsupervised) method to classify patents according to their semantic content, using both individual 

keywords and multi-stems, and running multiple optimisation methods. Smith and Agrawal (2015) 

adopted a supervised approach through the use of textual mining and machine learning clustering 

techniques (k-means and k-medoids clustering) to discover meaningful associations throughout a corpus 

of patents and assess the accuracy of the USPTO technology classes. They found that there might be 

“hidden” clusters defined by textual clustering methods that offer better classification than the current 

USPTO system. Choi et al. (2022) used deep learning techniques for patent landscaping, by 

simultaneously using textual information from patent abstracts and citation-graph information to reduce 

the need for human resources and address the demand for automated patent classification. Zhou et al. 

(2019) applied a semi-automated topic clustering model to identify both old and newly-emerging 

technological topics and used sentence-level semantic analysis, rather than traditional keyword-based 

methods, to better differentiate topics in the same technological field that often contain similar 

vocabulary.  

In general, the semantic analysis of patent data can preserve important technology content information 

(Tseng et al., 2007). However, patents with few keywords with little discriminating power, different 

spelling variants and synonym, and spelling errors increase the likelihood of false results and the need 

 

1 Clustering is a machine learning technique that groups data points into the same cluster based on their attributes. 

It can be applied to any type of database, not only on networks. Conversely, community detection is specifically 

tailored for network analysis and it allows discover communities inside them.  
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for validation by external experts. Furthermore, the semantic analysis is language-dependent: even if 

most of the patent documents today are available in English, some are in other languages, which could 

imply a significant pre-processing effort to translate all titles and abstracts into a common language. 

Some more sophisticated methods employing machine learning and deep learning algorithms are being 

developed and tested to improve the classification performance, but more work is still needed (Choi et 

al., 2022). Moreover, these methods require significant data science skills to be performed. Many 

researchers interested in technology analysis do not have these skills, which could prevent the wider 

adoption of these methods, at least for some time.  

Other methods to identify and analyse the technology domains in a broader landscape rely on the 

existing national or international patent classification systems applied by the patent offices. Patent 

offices can employ different classification schemes, but the US (USPC) and the international (IPC) patent 

classification systems are the most widely used. The IPC system, established in 1972, is consistently 

adopted by more than a hundred countries. Its main advantages are its global and temporal coverage, 

as also patents earlier than the Seventies have been retrospectively classified with IPC class. Moreover, 

the classification is updated annually to reflect the emergence of new technology fields. This classification 

divides technology into eight broad sections, which are then further split according to a hierarchical 

structure currently made of 129 classes, 632 subclasses, 7,530 main groups, and approximately 64 

thousand subgroups (Lupu et al. 2017).2  

IPC codes (or similar standardised classification schemes) can be used to analyse technology positions 

on a technology landscape, measure the similarity or distance between technologies, and identify 

different technology domains along which technology evolves. IPC codes have been used, for instance, 

by Long and Ma (2015) to identify the core technologies in the metro infrastructure field, by analysing 

the co-occurrence of IPC codes and calculating the node importance in the overall network structure. 

Kim and Bae (2017) clustered the patent documents on the wellness care industry on the basis of their 

patent classification, examined the combination of patent codes of each formed cluster and forecasted 

the promising technologies on the basis of forward-citations. Ardito et al. (2018) categorised the Internet 

of Things (IoT) patent landscape into different subclasses based on an analysis of the IPC codes, then 

reviewed and validated by academic experts in the field. As one of the few examples of studies using 

community detection algorithms on patent data, Gao (2018) proposed a method to analyse patent 

classes of similar technologies as network communities: they applied the Lumped Markov Chain method 

and the Louvain method to extract communities from a citation network based on citations between 

subclasses of patent families citing each other. A review of other USPC or IPC-based measures that 

enable a fine-grained characterisation of a technology landscape can be found in (Aharonson and 

Schilling, 2016). Benson and Magee (2013, 2015) used a hybrid approach, by searching for keywords 

corresponding to technological domains of interest, and examining the overlap between the US patent 

classes and the IPC classes to identify complete and relevant list of patent classes associated to each 

domain.  

The IPC system offers both patent examiners and other users the advantage of automated and 

standardised classification of all patents, made by experts with scientific or engineering background, and 

regularly refined to cover newly emerging technology fields. Relying on an already existing technology-

based categorisation reduces the considerable amount of human effort needed to classify the 

applications (Bergeaud et al., 2017). Moreover, as it is terminology and language-independent, it 

overcomes the previously mentioned language-related challenges characterising the text-based and 

semantic analysis approaches. The classification can also be applied to old patent documents for which 

little or no searchable text is available, thus allowing a more precise and complete search. Because of 

these advantages, the IPC classification has been used in this study to identify the LED technology 

 

2 Figures are referred to the eight edition of the IPC classification.  
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domains (Section 3 and 4), but the pros and cons of using alternative classification methods are also 

discussed (Section 5). 

2.3 Previous classifications of LED technology domains 

Some previous studies have already provided classifications of LED into different technology domains. 

All these studies used patent data, but applied different grouping approaches, some of which relying on 

IPC codes, others considering the patents’ titles and abstracts, and others using a mix of the two data 

sources. Moreover, some studies used manual aggregation of patents based on in-depth review of their 

content, while others adopted a more automated approach, based on unsupervised aggregation 

methods. More specifically, Gridlogcs (2010) extracted from the PatBase database the LED technology 

patents filed since 1927. After reducing the results to one member per family, the final dataset had 6,581 

records, which were manually classified on the basis of their IPC classes and expert opinion. Park and 

Jun (2017) performed, instead, a mainly automated analysis. They used both patents’ keywords, extracted 

through text-mining techniques, and IPC codes to estimate a Poisson count regression model for the 

analysis of smart LED systems and Bayesian networks to visualise networks of keywords and IPCs. Chen 

et al. (2016) adopted a different, but still automated approach. They selected the 20 companies that in 

Taiwan had the maximum number of LED patents until 2014 and used factor analysis to determine the 

key technologies that were covered, treating the different IPC codes (at eight digits) as variables. They 

found five main factors, corresponding to as many technological classes.  

Among the studies that used semantic analysis methods, Choi and Hwang (2014) conducted a community 

network analysis of the keyword contained in a (small - less than 700) sample of patents of LED and 

wireless broadband fields between 2001 and 2011. They did so using the Label Propagation Algoritm 

developed by Raghavan et al. (2007).  Boyack et al. (2009) worked on a larger dataset of 35,851 English-

language articles and 12,420 U.S. patents published or issued during the years 1977-2004 on the domain 

of solid-state light and electroluminescent materials and phenomena. They computed bibliographic 

coupling metrics on backward and forward citations to find similar patents and publications and define 

technological sub-domains, through an average-link clustering algorithm that assigns each node to a 

cluster based on edges and distances between nodes. 

Simons and Sanderson (2011) worked on an even larger dataset. They carried out a historical analysis of 

the emergence of the Solid-State Lighting industry (SSL), focusing on the multiple generations of 

technology and niche applications of LED. After extracting 185,852 patent applications on LED and SSL 

technology from 1937 to 2009, they classified them on the basis of both the IPC codes assigned to each 

application and the titles. They did so by developing and applying a taxonomy of IPC codes and keywords 

corresponding to each technology domain. They also used in-depth expert scrutiny of the content of a 

sample of patent applications to obtain final validation of the domains. The full IPC and keyword-base 

definition adopted to group patents is reported in their paper.  

Table 1 presents the classifications proposed by previous studies to analyse the LED technology 

landscape and evolution. Some classifications allow the distinction between the fundamental 

technologies underpinning the LED (semiconductors, electronics, optical technologies, etc.) and 

application-related domains of LED (i.e. technologies for lighting, display, printers and scanners, vehicles, 

etc.). They all differ from each other due to the different methods applied, but also the different data 

considered, some of which limited to specific countries.  

In general, previous studies show the feasibility of different methods for patent classification. The 

relatively small size of the patent databases handled by most of the previous literature made it possible 

to use either manual procedures or automated algorithms, as well as mix-methods for classification. 

When a larger database was analysed (Simons and Sanderson, 2011), the authors did not use any 
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statistical algorithm for automated data aggregation. Instead, they applied a supervised classification 

method, based on a definition of technology domains they had developed with the help of expert 

knowledge (Figure 1). The number of LED technology domains identified by these studies varied from 

four to 17, without any evident relationship between this number and the classification method adopted.  

Against the classifications used in the literature, this paper shows the application of a different approach 

to classify a very large-size LED patent database, larger than those used in any previous study (nearly 

500,000 patent families). The classification is conducted through a fully automated data analysis, based 

on community detection algorithms applied to the network of IPC codes. The methodology is presented 

and discussed in the next sections.  

 Mapping previous studies according to the number of patents classified and the 

classification method used  

 

 

Source: Authors.
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Table 1. LED technology domains identified in previous studies 
 DATA 

SOURCE 
SEARCH 

STRATEGY 
COUNTRY 
AND TIME 
COVERAGE 

DATABASE SIZE METHOD OF CLUSTERING TECHNOLOGY DOMAINS IDENTIFIED 

CHEN ET AL. 
(2016) 

Taiwan 
patent 
search 
system 
(TWPAT)  

Search based on 
the top 50 IPC 
classes related to 
LED technologies 

Taiwan  
1950-2014 
 

4,511 patent 
applications (only 
from the 20 
companies holding 
the largest number 
of patents) 

Factor analysis on the top 50 IPC 
classes 

1- Control components of light and 
magnetism 

2- Control equipment of light source 
3- Method of manufacturing component 

of semiconductor 
4- Reflector and TV devices 
5- Signalling system of visible signal 

 

GRIDLOGICS 
(2010) 

PatBase 
 

Search based on 
a mix of 
keywords and 
IPC codes 

World  
1950-2010 
 

6,581 patents (one 
member per patent 
family) 

Manual clustering, by reviewing 
112 different IPC subclasses and 
their co-occurrence in each 
patent 

Application segments: 
1- Electric Light Sources  
2- Semiconductor Technology  
3- Audio Electronics  
4- Optics  
5- Medical Devices  
6- Computer Peripheral Equipment  
7- Traffic Control Systems  
8- Scanning Equipment  
9- Computer Data Transfer Devices  
10- Heat Transfer & Control Systems  
11- Kitchen Appliances  
12- Dental Equipment  
13- Automobile Lighting Systems 

Sub-technologies: 
1- Circuitry 
2- Thermal control 
3- Electroluminescent 

materials 
4- Manufacturing and 

packaging 

BOYACK ET 
AL. (2009) 

Thomson 
Scientific’s 
Science 
Citation 
Index; 
the US 
Patent and 
Trademark 
Office’s 
database 

Search based on 
keywords 

World (but 
with over-
representatio
n of English-
speaking 
countries)  
1977-2004 

35,851 articles 
12,420 patent 
applications 
 

Iterative process based on i) 
bibliographic coupling to compute 
cosine coefficients for each pair of 
records, and 2) clustering at 
increasingly higher level (from 
clusters of patents, to clusters of 
clusters) 
3) final manual aggregation into 
“superclusters” by the Authors’ 

1- OLEDs 
2- LEDs & Optics 
3- LEDs & Heterostructures 
4- Linear Arrays 
5- Switches, Indicators 
6- Indicators, Scanners 

7- Sensors 
8- Backlights 
9- Panels, Phosphor 
10- Portable lights 

Lamps, Controls 

PARK AND 
JUN (2017) 

Korea 
Intellectual 
Property 
Strategy 
Agency 
 

Search based on 
a mix of 
keywords and 
IPC codes 

World 
1973-2015 
 

4,226 patents 
applications 
 

Combination of two methods: 
Method 1: Poisson hurdle 
regression model: keywords and 
IPC codes are used as explanatory 
variables of “Smart” and “LED” 
Method 2: visualisation based on 
Bayesian networks 

Smart LED technology:  
1- Electric lighting devices 
2- Wireless control system 
3- Layers and materials 
4- Power signal 

 

IRUNWAY 
(2014) 

USPTO Not specified World 
1994-2012 
 

22,662 patents 
applications 

Property methodology, most 
likely based on a manual 
classification of IPC codes 

Technology domains: 
1- Light emissions: Materials, Front-end 

processing, Back-end processing 

Applications: 
1- Displays: Backlit, 

Active matrix 
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2- Electronics: Power supply, Software 
3- Light management: Directionality, 

Phosphors 
4- Heat management: Air flow, Heat sinks 

2- Lighting: Residential, 
Commercial/Industrial 

3- Others: Indicators, 
Healthcare, 
Communication 

SIMONS 
AND 
SANDERSON 
(2011) 

USPTO Search based on 
a mix of 
keywords and 
IPC codes 

World  
1935-2009 

185,852 patent 
applications 

Mainly manual clustering based 
on IPC codes and patents’ titles 

Technology domains: 
1- FundSemic: Fundamental technologies 

for semiconductors 
2- FundOptics: Fundamental technologies 

for optical elements 
3- FundElectr: Fundamental technologies 

for electronic components mainly, but 
with some applications mixed in. 

4- FundChem: Chemical fundamental 
technologies, including organic 
applications 

5- FundComm: Fundamental technologies 
for communications, including 
telephonic and light beam 

6- FundManuf: Manufacture of 
LEDs/OLEDs/PLEDs  

7- FundSemiPl: Fundamental 
semiconductor technologies for 
devices with a plurality of components, 
most of which pertain to displays and 
arrays  

Applications: 
8- Lighting:

 Applications for 
primary lighting 

9- Display: Applications 
for displays 

10- PrintScan: 
Applications for 
printing and scanning 
use 

11- Vehicle: Applications 
for vehicles 

12- Projector: 
Applications for 
projectors 

13- PhotoPrinter: 
Applications for taking 
or printing photos 

CHOI AND 
HWANG 
(2014) 

USPTO and 
World 
Intellectual 
Property 
Source 
(WIPS) 

Search based on 
keywords 

World 
2000- 2011 
 

31 LED patents and 
346 wireless 
broadband patents 

Community analysis of the 
network of keywords extracted 
from the patents’ abstracts, using 
the Label Propagation Algorithm 
(Raghavan et al., 2007) 

1- Inspection lamp 
2- Concave mirror 
3- Transparent reflective optic 
4- Current regulator circuit 
5- Flexible member 
6- Power type  
7- Power LED 

8- Additional Optic 
9- Package housing 
10- Phosphor layer 
11- Radiation pattern 
12- Visible fluorescence 
13- Injection moulding 
14- Beam system 
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3 Methodology and data  

3.1  Process for technology domains identification 

The methodology proposed to identify the LED technology domains is based on three steps, visualised 

in Figure 2:. The first step relates to the construction of the patent database in the selected technology, 

in our case, LED. As explained earlier, we aim to compile a larger database than what was used in 

previous studies, in order to capture all the technological domains along which LED evolved over time. 

The patent search strategy and cleaning procedures are therefore designed to ensure high recall and 

precisions of results, as described in Section 3.2.  

The second step is the extraction of IPC codes from each patent application previously retrieved (Section 

3.3). As a unit of analysis, we have chosen the level of IPC subclasses (4 digits), which guarantees a 

sufficient fine-grained distinction between different technologies. Building an IPC-based network is 

easier than building a keyword-based network, as done for instance by Choi and Hwang (2014) and Choi 

et al. (2022). In the latter case, significant text mining, standardisation and cleaning work would be 

needed to set up the network. As discussed in Section 2.2, the IPC system offers instead the advantage 

of an already standardised and accepted classification of technologies. As an additional, but not strictly 

necessary way to increase the precision of the subsequent classification procedure, one can examine the 

frequency of IPC subclasses in the patent corpus and select only the most frequently used ones.  

The third step consists in running the community detection algorithm using the constructed IPC network. 

As discussed in Sections 2.2 and 2.3, very few studies have used community detection analysis to identify 

technologies domains, and even less did so for the LED technology. Many algorithms have been 

developed and could be used to this end. They include the Edge betweenness (Girvan and Newman, 

2002), Fastgreedy (Clauset et al., 2004), Walktrap (Pons and Latapy, 2005), Spinglass (Reichardt and 

Bornholdt, 2006), Infomap (Rosvall et al., 2007), Label propagation (Raghavan et al., 2007), VOS (van Eck 

and Waltman, 2007), Surprise (Aldecoa and Marín, 2013), Multilevel (Blondel et al., 2008), Louvain (Blondel 

et al., 2008) and the Leiden Community Detection methods (Traag, 2019).3 In this paper, we focus on the 

Louvain and the VOS methods for three reasons. First, they are both popular and suitable for analysing 

very large networks. Second, both algorithms are already embedded in different programme packages 

for the analysis of network data, such as Pajek, the one used for the analysis in this paper. As such, they 

allow researchers to avoid computational complexity and concentrate on the interpretation of results. 

Third, the two methods share an interesting property: they both rely on an optimisation quality function 

that includes a resolution parameter, which can be arbitrarily adjusted to detect communities of different 

size. The largest the resolution limit, the larger the minimal size of a detected community (see Section 

3.4 for more details).  

We apply both algorithms on the same LED IPC-based network. The analysis of results can take different 

perspectives: it can compare the relation and degree of consistency and similarity of results obtained 

from different community detection algorithms; it can focus on the comparison between technological 

fields identified by one community detection method at different resolution levels; it can examine the 

technological fields identified by one selected algorithm at a specific resolution level, and use them to 

analyse the technological landscape and its evolution over time. Section 4 discusses all these types of 

findings.  

 

3 The python cdlib library contains many of these algorithms.  
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 Analysis procedure for this research 

 

Source: Authors. 

3.2 Step 1: Patent database construction 

A comprehensive database for the LED technology, covering relevant patents filed in any patent office of 

the world, since the early decades of 1900s until today, was developed for this research. LED patent 

applications were harvested from PATSTAT, the Worldwide Patent Statistical Database. As first step, all 

patent applications that respond to the following criteria were extracted: i) applications (appln_id) whose 

earliest filing date was from 1937 onwards4; ii) applications filed in any country / patent office jurisdiction; 

iii) all types of Intellectual Property Right types (including patents of invention and utility models); iv) both 

granted and non-granted applications. This search strategy led to the extraction of a total of 85,476,013 

applications.  

Then, a keyword search on the titles and abstracts was run to identify the LED-related patent applications. 

The search strategy followed Simons and Sanderson (2011). The relevant keywords included “light 

emitting diode(s)”, “LED(s)”, “OLED(s)”, “semiconductor light emitting”, “semiconductor lumin*”, “solid 

state lighting”, “solid-state lamp(s)”, “luminescent diode(s)”, and others (the full search strategy is 

presented in Appendix A.I). Patents referring to the semiconductor technology associated with light-

emission were retained in the database, while semiconductors in general were deliberately not included. 

This criterion may have determined the omission of some relevant patents, but it would have more likely 

brought significant noise in the data.  

Out of the 85.5 million patents applications extracted, 692,313 had at least one relevant keyword in either 

the title or the abstract, or in both. To avoid including patents where the keyword “LED” is simply used as 

a verb, we removed the patent applications where “LED” is used in combination with a number of 

prepositions/verbs, and no other relevant keywords appear in either the Title or Abstract. Over 100 

thousand applications were removed through this automatic cleaning process (see Appendix A.I for more 

details).  

 

4 While the technology development of LED is generally indicated to start in 1962, some relevant research work 

already started in the previous years. Following Simons and Sanderson (2011), we extracted the patent applications 

related to LED technological development that were filed since 1937.  
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This strategy aimed at identifying LED-related patents with a high degree of precision. In fact, the large 

majority (over 90%) of patents collected include at least one relevant keyword in addition to “LED” (e.g. 

“light emitting diode(s)” or “solid state lighting”). The remaining patents could still include patents that 

are false positive, i.e. do not actually relate to the LED technology. This could happen, for instance, 

because the word “led” is used as a verb in combination with other prepositions that have not been taken 

into account in our previous cleaning step; or because the patents’ titles and abstracts have been typed 

entirely in capital letters, which makes it difficult to distinguish with certainty whether the word “LED” 

was used as a verb rather than as an acronym. Therefore, the patents with the following characteristics 

were manually reviewed: 

• 17,840 patent applications whose title or abstract contain the word “led” (in either capital or 

small letters), seemingly not used as a verb (i.e. not followed by any of the identified propositions 

or “to be”), and no other keywords; 

• 2,315 applications whose title or abstract contain at least one LED-related keyword and also the 

word “led”, but which seems to be used as a verb. 

After this further cleaning step, 17,049 applications (i.e. 16,323 patent families) were dropped from the 

dataset. A total of 562,463 applications were retained for subsequent analysis, corresponding to 466,513 

patent families (see Table 2).  

While the criteria set to identify LED-related patents were sufficiently wide to return a larger number of 

relevant patents as compared to any other previous study (high recall), the combination of automated 

and manual cleaning process brought to the removal of around 20% of patent applications and families, 

thereby significantly increasing the precision of results.  

Table 2. Results of the extraction process 
  RESULTING PATENT 

APPLICATIONS (APPLN_ID) 
RESULTING PATENT 
FAMILIES (DOCDB) 

1) Patent applications from 1937 to 2018 85,476,013 58,754093 

2) Patent applications where the Title contains at least one 
keyword 

163,403 133,524 

3) Patent applications where the Abstract contains at least one 
keyword 

674,192 581,220 

4) Patent applications where the Title or the Abstract contain 
at least one keyword 

692,313 590,493 

5) Patent applications where the Title or the Abstract contain 
at least one keyword, after automatically cleaning the “LED” 
keywords  

579,512 482,836 

6) Patent applications where the Title or the Abstract contain 
at least one keyword, after automatically and manually 
cleaning the “LED” keywords  

562,463 466,513 

The constructed dataset includes both granted and non-granted patents, patents of inventions and utility 

models. Patents span over a very long time horizon, including patents filed by virtually any countries of 

the world since 1962 (Figure 3: and Figure 4:). As such, to the best of our knowledge, this is the largest 

patent dataset that has been used to analyse LED technology.  

The first patent in the database was filed in 1962 by the National Research Development Corporation 

(UK). It concerns a method to manufacture a light-emitting diode from a substrate of gallium arsenide or 

indium phosphide. It builds on earlier inventions by Nick Holonyak Jr (General Electric) and others, 

achieved in the context of experiments on electromagnetic radiation emitted by semiconductor devices. 

The dataset includes applications filed in 77 patent offices, more than two-third of which is from China, 

Japan and the USA (Figure 3: and Table 3). The data cover 343,993 granted patents (61.2%). 65% of all 
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applications refer to patents of inventions, while 35% to utility models. China has the largest number and 

share of utility models, being 64% of its overall patent application documents.  

Figure 4: illustrates the number of patent applications by year. Having used the PATSTAT 2018 version, 

the extracted data are incomplete for 2017 and 2018, which explains the decreasing number of patents 

in those years. In 2016, there was a total of 55,234 different applications and 49,052 patent families. 

 Share of patent applications by 

patent office where the application 

was filed (1962-2018 period) 

Table 3. Distribution of patent applications by 

patent office and type of application 

(patent of invention, or utility model) 

 

 
TOTAL N. OF 
PATENT 
APPLICATIONS 

% OF PATENTS 
OF 
INVENTIONS 

% OF 
UTILITY 
MODELS 

CHINA 291,954 36% 64% 

JAPAN 81,291 100% 0% 

USA 60,378 100% 0% 

SOUTH KOREA 41,675 97% 3% 

WIPO PCT 25,410 100% 0% 

TAIWAN 21,005 83% 17% 

EPO 12,597 100% 0% 

GERMANY 8,779 79% 21% 

GREAT BRITAIN 4,104 100% 0% 

CANADA 3,530 100% 0% 

OTHERS 11,740 83% 17% 
 

 Number of patent applications (appln_id) and families (docdb_family_id) by year (1962-

2018 period) 

 
Source: Authors.
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3.3 Step 2: IPC network  

The dataset includes 606 different IPC subclasses (4 digits), spanning across all the eight IPC sections (A-

H). If the subclasses are further broken down, we find 5,216 different IPC main groups and over 38 

thousand different subgroups. Table 4 shows the twenty most frequently used IPC subclasses across the 

patents. They refer to different types of technologies, including those strictly related to LED applications 

(lighting devices, displays, photograph or projector systems, printing machines) and others related to the 

fundamental technologies underpinning the LED basic functioning and manufacturing, such as 

semiconductor devices, technologies related to electric heating, and optical elements. The most frequent 

IPC codes are indeed F21V “Functional features or details of lighting devices” and H01L “Semiconductor 

devices”. These are mentioned in respectively 22% and 17% patent applications.  

Since multiple IPC codes can occur in each patent application, and each patent family in the database 

includes between three and four individual applications on average, it results that each patent family has 

from 1 to 18 different IPC subclasses, with an average of 2. The most frequent IPC subclasses are 

mentioned by a large number of patent families. Specifically, 33% of patent families include at least one 

patent application that is assigned to the F21V subclass (Table 4).  

Table 4. The twenty most frequent IPC subclasses in the database of patent applications and 

DOCDB families 
IPC 
SUBCLA
SS CODE 

IPC SUBCLASS TITLE SHARE OF PATENT 
APPLICATIONS 

WHERE THE IPC 
SUBCLASS IS USED 

SHARE OF PATENT 
FAMILIES WHERE 

THE IPC SUBCLASS 
IS USED  

F21V MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING - 
FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; 
STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT 
OTHERWISE PROVIDED FOR 

22% 33% 

H01L ELECTRICITY - SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT 
OTHERWISE PROVIDED FOR  

17% 16% 

F21Y MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING - INDEXING 
SCHEME ASSOCIATED WITH SUBCLASSES F21L, F21S and F21V, RELATING TO THE FORM 
OF THE LIGHT SOURCES 

8% 1% 

F21S MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING - NON-
PORTABLE LIGHTING DEVICES OR SYSTEMS THEREOF  

6% 1% 

H05B ELECTRICITY - ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR  5% 7% 

F21K MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING - LIGHT 
SOURCES NOT OTHERWISE PROVIDED FOR 

2% 0.1% 

G09F PHYSICS - DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS  2% 4% 

G09G PHYSICS - ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING 
STATIC MEANS TO PRESENT VARIABLE INFORMATION  

2% 2% 

F21W MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING - INDEXING 
SCHEME ASSOCIATED WITH SUBCLASSES F21L, F21S and F21V, RELATING TO USES OR 
APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS 

2% <0.1% 

H04N ELECTRICITY - PICTORIAL COMMUNICATION, e.g. TELEVISION 1% 2% 

G02F PHYSICS - DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS 
MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES 
OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, 
POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING 

1% 1% 

G02B PHYSICS - OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS  1% 1% 

C09K CHEMISTRY; METALLURGY - MATERIALS FOR APPLICATIONS NOT OTHERWISE 
PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR 

1% 0.3% 

B41J PERFORMING OPERATIONS; TRANSPORTING - TYPEWRITERS; SELECTIVE PRINTING 
MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; 
CORRECTION OF TYPOGRAPHICAL ERRORS  

1% 0.4% 

G06F PHYSICS - ELECTRIC DIGITAL DATA PROCESSING  1% 1% 

A61B HUMAN NECESSITIES - DIAGNOSIS; SURGERY; IDENTIFICATION  1% 1% 
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H01S ELECTRICITY - DEVICES USING STIMULATED EMISSION 1% 0.3% 

G03B PHYSICS - APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR 
PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING 
ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES 
THEREFOR  

1% 0.5% 

G01N PHYSICS - INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR 
CHEMICAL OR PHYSICAL PROPERTIES  

1% 1% 

H05K ELECTRICITY - PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC 
APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS  

1% 0.5% 

 Frequency of IPC subclass codes across the patent families 

 
Source: Authors. 

When the cumulated frequency of IPC subclasses in the database of patent families is computed, it is 

found that the two most frequent ones (F21V and H01L) are used by 50% of all patent families, the 50 

most frequent IPC codes are used by 89% of patent families, and the top 100 IPC codes are used by 95% 

of all the patent families (see Figure 5). The remaining 506 IPC codes occasionally appear in a very small 

number of families. Given the high skewness of the distribution of IPC codes in the patent families, to 

increase precision in the classification, the next step of the analysis considers the top 100 most cited IPC 

codes. The Jaccard index between every pair of IPC codes was computed. The result is a 100x100 matrix 

of similarity coefficients, ranging between 0 and 1.5  

3.4 Step 3: Community detection analysis  

The different LED technological domains were identified by looking at the network of the 100 most 

frequent IPC codes at the subclass level and running community detection algorithms on them. Pajek 

(version 5.08) was used to analyse the Jaccard matrix. 6 The network of IPC codes has one giant 

component with 100 nodes.7 The communities were searched by partitioning the net through two 

alternative routines: the Louvain algorithm (Blondel et al., 2008) and the VOS algorithm (van Eck and 

 

5 Being A and B two IPC codes, the Jaccard index is defined as the number of patent families that contain both A and 

B divided by the number of patent families that contain A and/or B. In notation, this is equivalent to: J(A,B) = |A∩B| 

/ |A∪B|. The higher the index (closer to 1), the more similar the two IPC codes. 

6 The program, documentation and supporting material can be downloaded and used for free for non-commercial 

use from its web page: http://mrvar.fdv.uni-lj.si/pajek/.  

7 This giant component is defined in weak terms, i.e. every vertex can be reached following all edges regardless of 

their direction.  
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Waltman, 2007). With the Louvain method, communities are detected by optimising the modularity of 

the network, i.e. the metric of the density of links inside communities compared to links between 

communities (Eq. 1). The Louvain algorithm has the advantage of finding communities, even those weekly 

connected among each other, from very large networks in an efficient way (Traag et al., 2019). The VOS 

method also works by optimisation. It is generally used to find communities in patent and bibliometric 

networks but also to produce effective graphical representations of similarities between objects (van Eck 

and Waltman, 2010). Instead of optimising modularity, it optimises the VOS quality function, which is 

linked to the Jaccard coefficients of the network (Eq. 2).  

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 − 𝑟

𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖 , 𝑐𝑗)𝑖,𝑗            (1) 

𝑉 =
1

2𝑚
∑ [𝑠𝑖𝑗 − 𝑟]𝛿(𝑐𝑖, 𝑐𝑗)𝑖,𝑗           (2) 

where 

• 𝑄 indicates the modularity function 

• 𝑉 denotes the VOS quality function 

• 𝑚 is the total number of edges in the network 

• 𝑟 is the resolution parameter, whose default value if 1 

• 𝛿 is a function that yields 1 if the vertices are in the same community and 0 otherwise; 

• 𝑐𝑖 , 𝑐𝑗 are the respective communities to which 𝑖, 𝑗 are assigned. 

• 𝐴𝑖𝑗 represents the weight of the edge between i and j, 

• 𝑠𝑖𝑗  is the association strength (i.e. the Jaccard coefficient) between vertices 𝑖, 𝑗 

• 𝑘𝑖 = ∑ 𝐴𝑖𝑗𝑗  is the sum of the weights of the edges attached to vertex i. 

4 Results 

4.1 Comparative analysis of results  

Communities were searched with either the Louvain or the VOS algorithm at different resolution limits, 

from 0.50 to 3.50, with multi-level coarsening and multi-level refinement to obtain more stable results. 

The decompositions produced similar, although not identical results: three communities were identified 

at 0.50 resolution, and over 20 when the resolution parameter is higher than 3. The strength of the 

relationship between the two classifications, denoted by the Cramer’s V measure, is overall good (above 

0.75), but significantly high (0.93) at a resolution equal to 2. The Rajski’s information indexes and the 

Adjusted Rand index also show that the similarity of results produced by the two methods is relatively 

higher at resolution around 2, and decreases as resolution increases (Table 5; see also the Appendices 

A.II and A.III). 

Table 5. Results of the partitioning of the IPC network using the Louvain and VOS algorithms  
METHOD RESOLUTION MODULARITY (Q) OR 

VOS QUALITY (V) 
NUMBER OF 

COMMUNITIES 
CHI-

SQUARE 
CRAMER'S 

V 
RAJSKI 

(C1 <-> C2) 
RAJSKI 

(C1 -> C2) 
RAJSKI 

(C1 <- C2) 
ADJUSTED 

RAND 
INDEX 

LOUVAIN 0.5 Q = 0.630172 3 110.4624 0.7431771 0.37347009 0.51539677 0.57559328 0.6292899 

VOS 0.5 V = 0.6561409612 3 

LOUVAIN 0.75 Q =0.536326 6 151.9853 0.8717378 0.42165482 0.82235387 0.46391084 0.6050236 

VOS 0.75 V = 0.5465395278 4 

LOUVAIN 1 Q =0.478736 7 392.9317 0.8092504 0.49080882 0.69884102 0.62246634 0.3982234 

VOS 1 V = 0.4740107147 7 

LOUVAIN 1.25 Q =0.43883 8 476.4485 0.8250095 0.56704913 0.74683862 0.70198183 0.5552085 

VOS 1.25 V = 0.4361584247 8 

LOUVAIN 1.5 Q = 0.40021 9 580.3345 0.8517148 0.65315059 0.79020861 0.79016912 0.6376836 
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VOS 1.5 V = 0.4052666458 10 

LOUVAIN 1.75 Q = 0.367501 10 652.963 0.8517713 0.62274925 0.72937734 0.80988033 0.5118128 

VOS 1.75 V = 0.3809649159 12 

LOUVAIN 2 Q = 0.340733 14 942.9544 0.9258679 0.76042865 0.89785169 0.83244672 0.7213277 

VOS 2 V = 0.3629626144 12 

LOUVAIN 2.25 Q =0.316913 14 974.5993 0.8658474 0.74821453 0.87092871 0.84152738 0.6858062 

VOS 2.25 V = 0.3458821204 14 

LOUVAIN 2.5 Q = 0.294606 15 1134.703 0.900279 0.79144179 0.89312429 0.87423911 0.6913192 

VOS 2.5 V = 0.3295914061 15 

LOUVAIN 2.75 Q = 0.270942 17 1273.272 0.8920736 0.77723113 0.86892708 0.88045685 0.6730704 

VOS 2.75 V = 0.3147972153 18 

LOUVAIN 3 Q = 0.249055 18 1272.726 0.8652527 0.73623198 0.82209004 0.87576734 0.6017696 

VOS 3 V = 0.3015173093 22 

LOUVAIN 3.25 Q =0.226432 21 1484.281 0.8614758 0.75543859 0.84036124 0.88201319 0.5967126 

VOS 3.25 V = 0.2915801813 25 

LOUVAIN 3.5 Q = 0.206092 23 1693.021 0.8772429 0.78577352 0.86678068 0.8937054 0.6421081 

VOS 3.5 V = 0.2838107363 26 

Note: Clustering run in Pajek. For both the Louvain and VOS method, we used the standard clustering parameters, 

namely: Number of Restarts: 100; Maximum Number of Iterations in each Restart: 20; Maximum Number of Levels 

in each Iteration: 20, Maximum Number of Repetitions in each Level: 50.  

By reviewing the set of IPC codes included in each community, it is possible to understand the common 

technology characterising the domain. As resolution increases and a larger number of communities is 

formed, more specific technological domains appear from the decomposition and reassembling of other 

communities. The alluvial diagrams in Figure 6: and Figure 7: illustrate such a process, respectively for 

the Louvain and the VOS clustering, at resolutions going from 1 to 2.50. It can be observed that some 

specific technological domains, such as the one on watches technologies and lighting devices, appear 

already at a low-resolution level and remain nearly unchanged as resolution goes up. Other technological 

domains become evident only at a higher resolution. For instance, when the network of IPC codes is 

looked at low resolution, technologies for vehicles are merged with technologies related to 

measurement, and displays are not distinguishable from optics-related technologies. 

Even when the most similar VOS and Louvain clustering results are considered, i.e. those at resolution 

around 2, some differences in the way how IPC codes are clustered by each algorithm can still be 

detected. For instance, with the Louvain method, a set of IPC codes related to chemical elements of LED 

(compounds, layers, coating composition, photomechanical processing and materials for semiconductor 

devices) stand out as a separate community. In contrast, with the VOS method, they are aggregated with 

semiconductor-related technologies. As another example, while the Louvain algorithm identifies a 

community of IPC codes related to data processing, the respective codes are split across different 

application communities by the VOS (namely, Communication, Photo & printing, Vehicles and Medical 

applications & games), as shown by Table 8.   

Conversely, the VOS formula seems more suitable to detect specific application domains already at lower 

resolution limits than the Louvain method. When the same resolution limit is considered (2), the VOS 

formula separates the medical and games applications from other applications for agriculture, air 

conditioning and furniture. The Louvain procedure gathers, instead, all the respective IPC codes into one 

large community.  

Tables 6 and 7 present the composition of the main technological communities identified with the 

Louvain and VOS algorithms respectively, at the same resolution level (2). Table 8 shows the intersection 

between the twelve communities resulting from the VOS method and the 14 communities found with 

the Louvain method at resolution equal to 2. The composition of each community at different resolution 

limits is presented in Appendix A.II.  
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 Louvain IPC communities at different resolutions: alluvial diagram 

Note: The diagram was created in https://app.rawgraphs.io/ 

Source: Authors. 
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 VOS IPC communities at different resolutions: alluvial diagram 

 
Note: The diagram was created in https://app.rawgraphs.io/ 

Source: Authors.  
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Table 6. Main technological communities identified with the Louvain method, resolution = 2 
LOUVAIN 

COMMUNITY 
LOUVAIN COMMUNITY 

LABEL 
COMMUNITY COMPOSITION: IPC CODES 

1 Lighting devices F21K F21L F21S F21V F21W F21Y 

2 Semiconductors C07D C09K C23C H01J H01L H01S H05B 

3 Electrical components G01R G05F H01H H01M H01R H02B H02H H02J H02M H03K 

4 Displays G02F G09F G09G H05K 

5 Photo & printing B41J G02B G03B G03G G06T H04N 

6 Communication G08C H04B H04L H04M H04Q H04R H04W  

7 Vehicles B60K B60Q B60R B62J G01D 

8 Measuring B23K G01B G01C G01F G01J G01K G01M G01N G01S 

9 Medical applic. & games & 
air condit. & furniture 

A41D A45B A45C A45D A47B A47F A47G A61B A61H A61L A61M A61N A63B A63H B65D F24F F25D G09B  

10 Signalling & buildings E01F E04F E04H G08B G08G H02S 

11 Agric. & animals A01G A01K A01M G05B G05D 

12 Watches G04B G04G 

13 Chemicals B29C B32B C08G C08K C08L C09D G03F 

14 Data processing A63F E05B G06F G06K G06Q G07C G07F G11B 

Table 7. Main technological communities identified with the VOS method, resolution = 2 
VOS 

COMMUNITY 
VOS COMMUNITY LABEL COMMUNITY COMPOSITION: IPC CODES 

1 Lighting devices F21K F21L F21S F21V F21W F21Y 

2 Semiconductors B23K B29C B32B C07D C08G C08K C08L C09D C09K C23C G03F H01J H01L H01S 

3 Electrical components G01R G05F H01H H01M H01R H02B H02H H02J H02M H03K H05B 

4 Displays G02B G02F G09F G09G H05K 

5 Photo & printing B41J G03B G03G G06K G06T H04N 

6 Communication G06F G08C G11B H04B H04L H04M H04Q H04R H04W 

7 Vehicles B60K B60Q B60R B62J E05B G01D G07C 

8 Measuring G01B G01C G01J G01M G01N G01S  

9 Medical applic. & games A41D A45B A61B A61H A61M A61N A63B A63F A63H G06Q G07F G09B 

10 Signalling & buildings E01F E04F E04H G08B G08G H02S 

11 Agric. & air condit. & 
furniture 

A01G A01K A01M A45C A45D A47B A47F A47G A61L B65D F24F F25D G01F G01K G05B G05D 

12 Watches G04B G04G 

Table 8. Intersection between the VOS and Louvain methods (resolution = 2): number of IPC codes 

in each community 
  VOS (res. = 2) 

 
 

Agric. & air 
condit. & 
furniture 

Com
muni
catio
n 

Dis
pla
ys 

Electric
al 
compo
nents 

Lightin
g 
devices 

Measu
ring 

Photo 
& 
printin
g 

Semico
nducto
rs 

Signalli
ng & 
buildin
gs 

Vehicle
s 

Watc
hes 

Medical 
applic. & 
games 

Total 
n. of 
IPC 
codes  

LO
U

V
A

IN
 (

re
s.

=
 2

) 

Agric. & 
animals 

5 
           

5 

Chemicals 
       

7 
    

7 

Communicati
on 

 
7 

          
7 

Data 
processing 

 
2 

    
1 

  
2 

 
3 8 

Displays 
  

4 
         

4 

Electrical 
components 

   
10 

        
10 

Lighting 
devices 

    
6 

       
6 

Measuring 2 
    

6 
 

1 
    

9 

Medical 
applic. & 
games & air 
condit. & 
furniture 

9 
          

9 18 

Photo & 
printing 

  
1 

   
5 

     
6 

Semiconduct
ors 

   
1 

   
6 

    
7 

Signalling & 
buildings 

        
6 

   
6 

Vehicles 
         

5 
  

5 

Watches 
          

2 
 

2 

 Total n. of 
IPC codes 

16 9 5 11 6 6 6 14 6 7 2 12 100 



24 

 

4.2 Examining the LED technology domains  

The different technological domains of LED identified by the community detection methods can be used 

to inform the analysis of the evolution of the technology. This section provides some insights that are 

gathered when examining the different technology domains of the LED patent landscape. Among the 

results obtained from either the Louvain and the VOS method and the different resolution levels, the 

focus is put on the communities resulting from the VOS clustering at a resolution equal to 2. The reasons 

for selecting these results can be derived from the previous discussion. First, the resolution limit equal 

to 2 is chosen because, at this level, the results from both the VOS and the Louvain methods are the most 

similar with each other, as denoted by the Cramer’s V and the Adjusted Rand Index. Second, while having 

a smaller number of communities (12 with the VOS method vs 14 with the Louvain method, holding the 

resolution level fixed at 2), the VOS method enables to distinguish different applications of LED better. 

Table 9 presents a non-technical definition of the LED technology domains identified with the VOS 

community analysis.  

Table 9. Definition of the LED technology domains 
LED TECHNOLOGY 

DOMAIN 

DESCRIPTION 

SEMICONDUCTORS Semiconductors light-emitting devices (diodes, chips, wafers, modules) based on several 

compounds. It includes methods to manufacture them.  

ELECTRICAL 

COMPONENTS 

Circuits, switching power supply, control systems applied to a LED device.  

LIGHTING DEVICES It includes two main types of devices:  

- LED light bulb (or lamp): Device that uses LEDs to produce lights and fits in standard screw-in 

connections. Instead of a filament, the LED bulb contains a number of LEDs and electronic 

components, hidden inside a shell that looks exactly like an incandescent bulb. 

- LED lighting fixture or luminaire: Lighting device around the light source. It consists of several 

components such as mounting, lamp holder, reflector, share or glass cover, and illuminant. 

DISPLAYS Panel displays that use an array of LEDs (backlighting) as pixels for a video display. They can be 

used indoor (televisions) as well as for outdoor applications (signs and billboards). They can also be 

used for smaller devises such as phone displays. 

PHOTO & PRINTING LEDs used in devices for taking photographs or projecting images, printing and scanning devices, 

typewriters. LED can be used for flash light and image processing (similar to laser light).  

AGRICULTURE, AIR 

CONDITIONING, 

FURNITURE 

LEDs used for: horticulture, LED devices incorporated into pieces of furniture, air conditioning and 

ventilation systems, refrigerators and other applications for “human necessity” (IPC Section A).  

COMMUNICATION LEDs in communication, transmitting and receiving devices. It includes LEDs to illuminate 

radio/telephone systems, liquid crystal display and keypad in mobile phones, and for wireless data 

transmission. 

MEDICAL APPLICATIONS 

AND GAMES 

LEDs used for medical treatments (e.g. phototerapy, light surgery) or for medical devices and 

instruments. This domains also includes LEDs for gaming products (video games) and toys. They 

share with medical application the use of LEDs mainly for status indicators on circuit boards or 

control panels.  

VEHICLES LEDs for front and rear lights, position detectors, vehicle headlight and safety light, electronic 

indicators in motor vehicles 

MEASURING Sensor, optical systems, photometers to measure the chemical or physical properties of LED and its 

parameters quantify and evaluate the parameters of LED (lighting output, luminous intensity, 

chromaticity, temperature, light and colour uniformity, contrast, …).  

SIGNALLING AND 

BUILDING 

LED lights used for signalling purposes, especially including traffic signal lights, landing zones, 

railway crossing, construction site signals, building decoration.  

WATCHES LEDs in clocks or watches, including smart watches 
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The analysis of patent diffusion in the network shows that 46% of LED patent families have IPC codes 

belonging to one community only; the remainder has a mix of IPC codes that fall under two or more 

different communities. The community of Lighting devices is the largest one in terms of patent families, 

with over 430 thousand families having at least one application assigned to the IPC code related to the 

lighting technology. Lighting technology is the most diffuse also when computing the fractional number 

of patent families, i.e. the patents divided by the number of communities to which their IPC codes belong, 

thus avoiding double counting (Figure 8:). 

 Number of patent families and fractional patent families by community (VOS, res.=2) 

 
Note: The community labelled as “Others” refers to the residual IPC codes that have not been considered in the 

analysis, because they are not in the top 100 most frequently used IPC codes. 

Source: Authors.   

The number of patents by community and year can be looked at to have a preliminary understanding of 

how the technology has evolved over time (Figure 9:). Research on semiconductors started in the very 

earlier years of the LED technology evolution, but it continued over the following years and gained high 

relevance again in recent years, with the development of new organic semiconductor substrates for OLED 

display applications. Electrical/electronic technologies have been predominant until the early Nineties. 

Technologies for photo and printing devices were significant in the Eighties and early Nineties. 

Afterwards, the innovative effort focused on technologies for displays and lighting devices. These findings 

are coherent with other empirical studies on LED (Sanderson and Simons, 2014; Simons and Sanderson, 

2011). 
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 Share of patent families by community and year (VOS, res.=2) 

 
Note: 5-years moving average from 1962 to 2018 

Source: Authors. 

When analysing different technological domains, an interesting question can arise, namely to what extent 

these domains are similar or different from each other. The concepts of technological similarity, 

proximity or relatedness are widely used in the literature to study knowledge recombination (Nakamura 

et al., 2015; Nelson and Winter, 2004) and the mechanisms for new knowledge generation (Joo and Kim, 

2010). Different metrics and methods can be used to assess how close or distant two technological 

domains are from each other (Alstott et al., 2017; Aharonson and Schilling, 2016). Conducting a fully-

fledged assessment of technological similarity, connectivity or relatedness is out of the scope of this 

paper. However, some insights can be derived through some descriptive analysis and simple statistics 

on the network of IPC codes and their diffusion in the patent database.  

If the tree structure of the IPC nomenclature is exploited to analyse the combination of IPC codes across 

the 12 technological domains at section (1 IPC digit, from A to H) or class (3 digits) level, it can be observed 

how sparse each technological domain is across different types of technologies (Table 10). The domains 

of lighting devices, measurement technologies and watches are the most homogenous ones, as all the 

IPC subclasses codes composing these domains belong to one IPC section and class only. The lighting 

devices domain is composed of IPC codes related to the F section and F21 (Lighting) class. The measuring 

and watches domains are made of IPC codes falling into the G section (Physics) and, respectively, the G01 

(Measuring; testing) and G04 (Horology) classes. All other domains are more heterogeneous in their 

composition, being characterised by IPC codes that belong to different IPC classes and sections. 

Conversely, some technological domains are more diffuse across different IPC codes. For instance, the 

community related to the design and manufacture of semiconductor devices results from the 

aggregation of IPC codes related to chemistry (section C), electricity (section H), and performing 

operations (section B). As another example, the electrical components community is mainly composed 

by IPC codes referring to electricity (section H), but also to power control and measuring properties 

(included under Section G). 
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Table 10.  Distribution of IPC classes of each technological domain across the IPC classes 
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A01 AGRICULTURE; 
FORESTRY; ANIMAL 
HUSBANDRY … 

          19%             

A41 WEARING APPAREL               8%         

A45 HAND OR TRAVELLING 
ARTICLES 

          13%   8%         

A47 FURNITURE; DOMESTIC 
ARTICLES OR 
APPLIANCES … 

          19%             

A61 MEDICAL OR 
VETERINARY SCIENCE … 

          6%   33%         

A63 SPORTS; GAMES; 
AMUSEMENTS 

              25%         

B23 MACHINE TOOLS …   7%                     

B29 WORKING OF PLASTICS 
… 

  7%                     

B32 LAYERED PRODUCTS   7%                     

B41 PRINTING; LINING 
MACHINES; 
TYPEWRITERS; STAMPS 

        17%               

B60 VEHICLES IN GENERAL                 43%       

B62 LAND VEHICLES FOR 
TRAVELLING OTHERWISE 
THAN ON RAILS 

                14%       

B65 CONVEYING; PACKING; 
STORING, … 

          6%             

C07 ORGANIC CHEMISTRY   7%                     

C08 ORGANIC 
MACROMOLECULAR 
COMPOUNDS … 

  21%                     

C09 DYES; PAINTS; POLISHES; 
NATURAL RESINS … 

  14%                     

C23 COATING METALLIC 
MATERIAL … 

  7%                     

E01 CONSTRUCTION OF 
ROADS, RAILWAYS, OR 
BRIDGES 

                    17%   

E04 BUILDING                     33%   

E05 LOCKS; KEYS; WINDOW 
OR DOOR FITTINGS; 
SAFES 

                14%       

F21 LIGHTING 100%                       

F24 HEATING; RANGES; 
VENTILATING 

          6%             

F25 REFRIGERATION OR 
COOLING … 

          6%             

G01 MEASURING; TESTING     9%     13%     14% 100%     

G02 OPTICS       40%                 

G03 PHOTOGRAPHY …   7%     33%               

G04 HOROLOGY                       100% 

G05 CONTROLLING; 
REGULATING 

    9%     13%             

G06 COMPUTING; 
CALCULATING; 
COUNTING 

        33%   11% 8%         

G07 CHECKING-DEVICES               8% 14%       

G08 SIGNALLING             11%       33%   

G09 EDUCATING; 
CRYPTOGRAPHY; 
DISPLAY; ADVERTISING; 
SEALS 

      40%       8%         

G11 INFORMATION STORAGE             11%           

H01 BASIC ELECTRIC 
ELEMENTS 

  21% 27%                   

H02 GENERATION, 
CONVERSION, OR 
DISTRIBUTION OF 
ELECTRIC POWER 

    36%               17%   

H03 BASIC ELECTRONIC 
CIRCUITRY 

    9%                   
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H04 ELECTRIC 
COMMUNICATION 
TECHNIQUE 

        17%   67%           

H05 ELECTRIC TECHNIQUES 
NOT OTHERWISE 
PROVIDED FOR 

    9% 20%                 

  TOTAL 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 VARIANCE 0 0.003 0.012 0.009 0.006 0.003 0.059 0.009 0.013 0 0.006 0 

Figure 10: illustrates the network of IPC codes, where the distance between the nodes reflects their 

similarity calculated based on the IPC co-occurrence matrix and the maximisation of the weighted sum 

of the squared Euclidean distances between all pairs of items (van Eck and Waltman, 2007). The network 

map shows that the IPC codes related to lighting devices, semiconductors, photo and printing, and 

watches are the most different from the other communities, being positioned at the margins of the map. 

These are also the communities that the community detection algorithms can identify already at low-

resolution levels. At the centre of the graph, there is a core network of technologies that are relatively 

less different from each other and mainly relate to LED technologies for various applications (vehicles, 

communication, medical applications, etc.). It is interesting to notice that, based on the co-occurrence of 

IPC codes, the display-related technologies are positioned between the general semiconductor 

technologies, the photo and printing and other electrical components technologies. This location is 

coherent with the fact that the application of LED to displays historically originated from the evolution of 

semiconductor, electrical and image data processing technologies, the latter characterising the photo 

and printing devices as well (Sanderson and Simons, 2014).  

 Network visualisation of IPC communities (VOS, res.=2) 

 

Note: created with VOS Viewer, 1.6.14 (27 Jan 2020). 

Source: Authors. 
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5 Discussion on the robustness of results and 

comparison with other classification methods  

The discussion in Section 4.1 shows that the results of the community analysis partially change 

depending on the algorithm used, both in terms of the number of communities identified and in terms 

of their composition. Moreover, different results are obtained when changing the resolution parameter 

of the algorithm. These issues are not considered limitations for this analysis. On the contrary, the 

possibility to get results at different levels of granularity depending on the chosen resolution, as well as 

to compare results from different algorithms, is regarded as an advantage of this method. By looking at 

the patent landscape from multiple perspectives and from different distances, the researcher can get a 

richer understanding of the technology domains and more flexibility in the description and configuration 

of the landscape, so as to better accommodate his/her specific research needs.  

Still, some actions have been taken to check the stability of results deriving from each community 

detection algorithm. For both the Louvain and the VOS clustering, the standard parameters proposed by 

Pajek were applied, namely: number of restarts: 100; maximum number of iterations in each restart: 20; 

maximum number of levels in each iteration: 20; maximum number of repetitions in each level: 50. The 

communities resulting from running either one or the other community detection algorithm do not 

significantly change when changing any of these parameters. For instance, the same results are obtained 

when only 10 restarts are allowed.  

Considering the large number of Chinese patent applications and utility models present in the database, 

it is important to know if their inclusion or exclusion affects the results of the community analysis and, if 

so, to what extent. The Squared Chi test rejects the hypothesis that IPC codes are equally distributed in 

the total patent database and in the sample of Chinese patents, or of utility models. However, there is a 

positive probability that IPC subclasses assigned to a larger number of patent applications filed in any 

patent office worldwide are also the most frequent ones among Chinese applications; and that IPC 

subclasses to which larger number of patents of inventions are assigned are also the ones to which larger 

number of utility models are attributed.8 Some notable divergences between the two distributions are 

worth mentioning (Figure 11: and Figure 12:): the share of Chinese applications in the subclasses F21V 

and F21Y are 22% and 10% higher than the share of applications filed in any other patent office, which 

denote a stronger specialisation of Chinese patent applicants in these technologies. On the contrary, the 

share of Chinese applications focused on technologies classified in the H01L code is 20% less than the 

share of applications in other countries. Similar divergences are found when considering the subsample 

of utility models and patent of inventions, also due to the fact that 64% of all Chinese applications are 

utility models: utility models are more frequent in the F21V subclass (+23%) and F21Y (+10%), while the 

share of patents of invention in the H01L subclass is 22% higher than the share of utility models in the 

same class. In all the other IPC subclasses, the discrepancy in the two distributions is lower than 2%.  

Because of these differences in the distribution of IPC codes, the results of the community analysis 

partially change when excluding either Chinese applications, or utility models. More specifically, the VOS 

community detection method applied to the database of patents of inventions (thus excluding utility 

models) still finds 12 different communities at resolution equal to 2. The composition of these 

communities in terms of IPC codes largely overlaps with the results obtained on the full patent database: 

 

8 The correlation in the distribution of IPC codes between the number of Chinese applications and the number of 

applications at other patent authorities is 59%; the correlation in the distribution of IPC codes between the patents 

of inventions and the utility models is 61%. Both the correlation coefficients are statistically significant at 1% 

confidence level. 
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93% of IPC codes are clustered in the same communities as those found on the full dataset. When 

reducing the dataset to patents filed in non-Chinese patent offices, the VOS clustering finds 12 

communities, which are similar by 86% in their composition to the results obtained from the full dataset. 

In this case and at this resolution, the algorithm cannot clearly distinguish among the LED technologies 

related to vehicles, measuring and testing, and other applications. It is sufficient to increase the 

resolution by 0.2 points to regroup the IPC codes into 14 communities and better distinguish the LED 

technologies for vehicles from other applications.  

 Diffusion of patent applications in the top 20 IPC subclass (panel A) and the VOS 

communities (patent B) by patent authority  

Panel A Panel B 

 

 

Note: The fractional number of patent applications by patent authority and technology community has been 

calculated and displayed in panel B chart.  

Source: Authors. 

 Diffusion of patent applications in the top 20 IPC subclass (panel A) and the VOS 

communities (patent B) by IPR type  
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Note: The fractional number of patent applications by patent authority and technology community has been 

calculated and displayed in panel B chart.  

Source: Authors. 

The classification produced by this study differs from other literature because of the different grouping 

method used, but also by the different search criteria considered to build the LED patent database 

(Section 3.2). This study considered a larger database both in terms of time and country coverage (any 

patent office worldwide). Table 11 compares the composition of technology domains resulting from our 

study (according to the VOS community detection method, with resolution equal to 2) and the technology 

classification developed by Simons and Sanderson (2011) through manual scrutiny and attribution of IPC 

codes. These authors developed their classification on the basis of the second largest database of LED 

patents ever used in previous literature, extracted with the same keyword search criteria, so comparing 

the results of the two studies is quite interesting.  

In short, the following similarities and differences can be highlighted.  

First, each study included in its classification a bunch of IPC codes that are not considered by the other 

study (see last row and last column of Table 11). For instance, Simons and Sanderson did not account for 

any IPC code of section A. These codes, however, are useful to identify the technology domains related 

to applications such as agriculture, air conditioning and furniture, and medical applications and games. 

Conversely, Simons and Sanderson used many codes of section B to detect patents related to the 

manufacture of semiconductors; these codes are not accounted for in this study because they are not 

among the 100 most frequently assigned to LED patents. Focusing on the most used and relevant IPC 

codes allowed this study to detect meaningful technology classes that have been overlooked in the 

previous study (another example is the watches domain), and at the same time to drop those codes 

which, albeit potentially relevant for the LED technology, are assigned to a much smaller fraction of 

patents. 

Second, Simons and Sanderson’s classification provides a more detailed characterisation of the 

fundamental technologies related to semiconductor devices, by distinguishing between fundamental 

semiconductor technology, plural semiconductors (e.g. arrays), manufacturing techniques of 

semiconductors, chemical components, organic LED. All these domains are grouped under the same 

category of Semiconductors in this study. As a matter of fact, the community detection algorithm finds 

this domain at low resolution level (VOS, res.=1) and its composition does not change as resolution 

increases up to 2.5 (see Figure 7:). While further domains appear from the decomposition of the 

semiconductors group at higher resolution levels (see Appendix A.II), the frequent co-occurrence of the 

underlying IPC codes suggests that this domain, albeit large in size, is in fact highly homogenous and 

therefore less prone to be split into smaller groups. A similar consideration applies to the photo & 

printing community, whose IPCs are distributed across three different classes by Simons and Sanderson, 

namely projector, printing and scanning, photo and printing. 

Third, the IPC community detection method provides a more precise definition of the LED lighting 

technology, by rearranging the IPC codes that Simons and Sanderson used to define the LED lighting 

technology into more specific domains. Code G09F13 (illuminated signs), which they included in the 

definition of the Lighting domain, in fact is more often used in combination with other IPC codes related 

to the display domain, as reflected by the results of the community analysis. Likewise, it makes sense to 

separate the general lighting application of LED from LEDs used in traffic control systems (codes G98G), 

road and traffic signs and railway crossing (E01F/9 and E01F/13). The community detection analysis 

enables to make this distinction since a very low-resolution level.  
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Table 11. Comparison of the technology domains between Simons and Sanderson (2011) and this study (VOS method, res. = 2) 
 TECHNOLOGY DOMAINS FROM THIS STUDY OTHER IPC CODES 

CONSIDERED BY SIMONS 
AND SANDERSON BUT 

NOT IN THIS STUDY 

LIGHTING 
DEVICES 

DISPLAYS PHOTO & 
PRINTING 

VEHICLES SEMICONDUCTOR
S 

ELECTRICAL 
COMPONENTS 

SIGNALLING & 
BUILDINGS 

MEASURING AGRIC. & AIR 
CONDIT. & 
FURNITURE 

COMMUNIC
ATION 

WATC
HES 

MEDICAL 
APPLIC. & 

GAMES 

TECH. 
DOMAIN
S FROM 
SIMONS 

AND 
SANDER

SON 

LIGHTING F21K F21L F21S 
F21V F21W F21Y 

G09F13 
   

H05B31-43 E01F13 E01F9 
G08G 

     
F21H E01C17 

DISPLAY 
 

G09G3/03-38 
G09G5 G09F9 

H04N3-17 
      

G06F3/147 
G06F3/033 

G04G9 
  

OPTICS  G02B G02F  
          

PROJECTOR  G02B27/18 G03B21 
H04N5/74 
H04N9/31 

          

PRINTING 
AND 

SCANNING 

  H04N1 B41J 
G03G15 G06K7 

G06K15 

         Other subclasses of B41 

PHOTO AND 
PRINTING 

  G03B G03G  G03F        B27, other subclasses of 
B03 

VEHICLE   
 

B60Q B60R 
B60K B62J 

        
Other subclasses of B60 

and B62. 
B61-B64 

FUNDAMEN
TALS OF 

SEMICOND
UCTORS 

 
   G03F H01L21 

H01L23 H01L25 
H01L29 H01L31 

H01L51 
H01L33/00 

 
      

G11C 

FUNDAMEN
TALS OF 

SEMICOND
UCTORS 

WITH 
PLURALITY 

OF 
COMPONEN

TS 

    H01L27         

MANUFACT
URE OF 

LEDS 

    B23K B29C B32B    B65D    B0 (except B01D35-53 and 
B01J) B03 B04 B05 B07 B08 
B21 B22 B24 B25 B26 B27 
B28 B30 B42 B43 B66 B67; 

other subclasses of B23 
B29 B32 B65 

CHEMICALS     C07D C08G C09D 
C09K C08K C08L 

C09K11 C23C 

       C01 C02 C03 C04 C09C C12 
C22 C23 C25 C30; Other 

subclasses of C07 C08 C09 
and C23 

ORGANIC     C07D C08G C08K 
C08L 

        

COMMUNIC
ATIONS 

         H04B10 
H04M H04Q 

   

ELECTRICAL 
TECHNOLO

GY 

 H05K   H01J H01S H01R H03K        

OTHER IPC CODES USED 
IN THIS STUDY BUT NOT 

BY SIMONS AND 
SANDERSON, BY 

TECHNOLOGY DOMAIN 

 
Others groups 

in G09F and 
G09G 

G06T, other 
groups in G06K 

and in H04N 

E05B G01D 
G07C 

 
Other groups in 

H05B; G01R G05F 
H01H H01M H02B 
H02H H02J H02M 

Other groups 
in E01F; E04F 
E04H G08B 
G08G H02S 

G01B G01C 
G01J G01M 
G01N G01S 

A01G A01K A01M 
A45C A45D A47B 
A47F A47G A61L 
F24F F25D G01F 

G01K G05B G05D 

Other 
groups in 
G06F and 

H04B, G08C 
G11B H04L 

H04R H04W 

G04B, 
other 

groups 
in 

G04G 

A41D A45B 
A61B A61H 
A61M A61N 
A63B A63F 
A63H G06Q 
G07F G09B 
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Finally, it is worth mentioning that alternative approaches, besides the community detection method, 

were considered to identify the technological domains in the LED patent database. More specifically, the 

following methods were also tested in the framework of this research: i) text analysis of titles and 

abstracts of patent applications and clustering based on keywords instead of IPC codes; ii) clustering of 

patent applications (or families) on the basis of their IPC codes; iii) manual clustering of patents based 

on both IPC codes and keywords (following Simons and Sanderson, 2011). Presenting and discussing the 

results of all these other methods is out of the scope of this paper. However, some lessons can be drawn 

from those tests, which are useful to appreciate the differences and comparative advantages of the 

method chosen and presented in this paper (Table 12).  

Table 12. Advantages and limitations of different methods applied to identify the LED 

technology community in the same patent database 
METHOD ADVANTAGES LIMITATIONS 

CLUSTERING OF PATENTS BASED ON 
IPC CODES AND KEYWORDS, 
ACCORDING TO A PRE-DEFINED 
CLASSIFICATION DERIVED FROM 
PREVIOUS STUDIES (MAINLY 
SIMONS AND SANDERSON, 2011) 

• Top-down classification, which does not 
require automated data processing  

• Easy to apply 

• The database contains some relevant IPC codes 
that are not classified by previous studies 

• Previous classifications may fail to identify 
relevant technology domains 

TEXT-BASED CLUSTERING OF 
PATENTS  

• Mix between automated analysis and 
manual review and agglomeration  

• Able to identify technology domains at very 
high-degree of granularity  

• Applicable only for patents with titles and 
abstracts in English  

• High number of clusters to review in-depth to 
identify the underlying technology domain 

• Difficult interpretation of technology domains: 
the keywords clusters does not immediately point 
to a common underlying technology 

CLUSTERING PATENTS BASED ON 
THEIR IPC CODES  

• Automated analysis, enables to agnostically 
classify patents by looking at IPC subclasses 
as attributes 

• Easy interpretation of results based on the 
combination of IPC technology classes 

• High number of clusters to review in-depth to 
identify the underlying technology domain 

• Highly data-intensive computing due to high data 
sparseness 

COMMUNITY DETECTION OF IPC 
CODES (100 MOST FREQUENT ONES, 
OCCURRING IN 95% OF PATENT 
FAMILIES) 

• Automated analysis, enables to agnostically 
classify patents by looking at IPC subclasses 
as attributes 

• Easy interpretation of results based on the 
combination of IPC technology classes 

• Focusing on the 100 most frequent IPC 
subclasses and clustering IPC codes, instead 
of patents, enable to reduce the data 
sparseness and make the clustering more 
manageable 

• Possibility to detect communities at 
different levels of granularity, by changing 
the resolution parameter 

• One patent family may fall under different 
technology domains, depending on the co-
occurrence of IPC subclasses in the patent 
applications 

 

The text analysis of patent titles and abstracts was performed on 552,193 LED patent applications having 

a title and abstract in English (more than 98% of the initial extraction). Following Arts et al. (2018), 

Bergeaud et al. (2017) and Choi and Hwang (2014), over 6,461 1-gram stemmed keywords were extracted 

to construct the Term Frequency-Inverse Document Frequency matrix. The co-occurrence of keywords 

was analysed through the k-means clustering method (Sinanga and Yang, 2020), leading to the 

identification of 98 clusters. In each cluster, the top keywords were examined, a sample of abstracts 

looked in more detail and the distribution of IPC codes in the applications inspected in order to rearrange 

the 98 clusters in a smaller number of “super clusters” containing similar types of technologies.9 This 

 

9 The Elbow method has always been used in combination with the k-means clustering in order to find the optimal 

number of clusters. 
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approach enabled us to find some relevant technology domains related to both fundamental 

technologies (semiconductors, electrical components, optical components, materials and chemical 

components) and application-related technologies (lamps, displays, advertising boards, camera, 

scanning, vehicles, air conditioning, computer indicators, phone, game machines, others). This method 

proved able to identify very specific technology domains largely similar to those resulting from clustering 

the IPC codes. However, this outcome depends primarily on the reaggregation of clusters that was 

performed manually. As a matter of fact, the keywords characterising each cluster were often not 

sufficient to enable the detection of the underpinning technology domain. Compared to that, the fully 

automated community detection from the network of IPC codes, that is discussed in this paper, produced 

much more self-explanatory results.  

Another attempt consisted in clustering the 562,463 LED patent applications based on the diffusion of 

the IPC codes, either at subclass or group level. A varying number of clusters, from 10 to more than 80, 

was identified, depending on the clustering approach. Both the k-means and the hierarchical method 

(Ward, 1963; Kanungo et al., 2002; Cheung, 2003; Celebi et al., 2013; Sinanga and Yang, 2020) were tested. 

The analysis of IPC codes led to an easier interpretation of the results and attribution of each cluster to 

a technology domain. However, it required significant computation power because of the large size of 

the applications-IPC network. The high skewness of the frequency distribution of IPC codes (many IPC 

codes used in a small number of patents) produced a lot of noise in the data, making the database sparse 

and patents extremely difficult to cluster in a completely automated manner (Jun et al., 2014). Data 

sparsity is widely considered as a key cause for unsatisfactory classification accuracy (Bissmark and 

Wärnling, 2017). The problem arises when the matrix of data to classify (such as the IPC frequency matrix) 

has many missing values, which prevents from producing accurate predictions. Data sparseness had two 

implications: first, it determined the creation of a residual cluster of patent applications characterised by 

a combination of many different and not clearly interpretable keywords or IPC codes;10 second, it 

prevents from properly checking the robustness of results, because of the high-computing power and 

time required to run more than one clustering iteration.11 The top-down grouping of patents according 

to the IPC-based LED classification developed by Simons and Sanderson (2011) provides an easier way 

to split the database into technology domains. However, their classification considers only a subset of 

IPC codes, missing many relevant and highly diffused codes.  

Against these alternative methods, the advantages of the community detection method presented in this 

paper are noticeable. The challenge of clustering a large and sparse database is addressed by grouping 

the most frequent IPC codes, instead of patent applications directly. Once the technology domains are 

identified, the distribution of IPC codes in the patent applications is analysed to attribute patents to one 

or more domains. The analysis leads to a manageable number of communities, easily interpretable, 

without any human action being necessary to adjust the clustering. Being a fully data-driven exercise, the 

classification is done in an agnostic way, on the basis of IPC codes co-occurrences only. The possibility to 

detect communities at different resolution levels is another advantage of this method over others. A 

possible drawback is that each patent may be assigned to more technology domains, depending on the 

multiple IPC codes assigned to each application. As explained in Section 4.2, around half of the patent 

families are classified under one technology domain only, the remainder falls into two or more domains. 

On the one hand, clustering IPC codes can cause some difficulties in the conceptualisation of domains 

 

10 This residual cluster is made of around 5% of patent applications, when the text-based clustering is performed. It 

has a varying size up to 20% approximately when the IPC clustering is applied, depending on the clustering procedure 

and parameters selected.   

11 In the database of 466,513 patent families, there are about 110 billion possible pairs of IPC subclasses. Running 

the clustering code on such network takes several days. The time increases as more iterations are run and different 

starting points are set to get more robust results.  
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when patent applications or families are the unit of analysis. On the other hand, having multiple 

technology domains assigned to patents is a property that can be exploited and used for ad hoc analysis, 

e.g. on the degree of relatedness of technological domains (Joo and Kim, 2010).  

5.1 Conclusions 

This paper contributes to the literature on technological change and evolutionary economics, by 

answering the question of how to identify the different technology domains of innovation, especially if 

characterised by multiple applications and a meandering evolutionary process. Community detection 

algorithms have been used for this aim. LED has been selected as an example of multi-purpose 

technology and used to test the feasibility of the community detection analysis. Indeed, while this 

methodology is consolidated in the literature and applied in several other research fields, its application 

for the analysis of LED and, in particular, for the identification of its technology domains, is new.  

The co-occurrence of technological codes included in over 400 thousand LED patent families filed since 

1962 across the world has been analysed. Depending on the partitioning method and the resolution 

parameters, the 100 most frequent IPC codes, assigned to 95% of all LED-related patents families, can be 

grouped into a number of communities. Each community of IPC codes can be interpreted as a technology 

domain. More detailed communities can be detected when the resolution parameter of the algorithm 

increases. The VOS method provides a more precise identification of specific technology domains of LED 

already at low-resolution limits, as compared to the Louvain algorithm. At resolution equal to 2, the 

Louvain and the VOS algorithms produce very similar results, both in terms of the number of 

communities detected and their size and composition. Twelve different communities are identified at 

this resolution limit with the VOS method. The largest ones are related to the application of LED to lighting 

devices, displays and printing, and the general semiconductor technologies and other 

electrical/electronic components. Other specific technology domains refer to the use of LED for watches 

and computer indicators, which are among the first applications of LED, but also traffic lights, vehicles, 

medical applications and others.  

Both the visualisation of the network of IPC communities and the analysis of the distribution of IPC codes 

across the patent families and over time provide an indication of how the technology domains have 

emerged, which is coherent with the historical development of LED discussed in the literature. The 

proposed classification of LED technology domains is therefore meaningful, easy to interpret, and can be 

exploited for a richer and insightful analysis of the technology.  

As compared to the results of previous studies on LED, the classification presented in this paper relies 

on a much larger number of patents, focuses on the most diffused IPC codes in the database and their 

actual co-occurrence in the patent corpus, and is based on unsupervised network partitioning with no 

need for direct inspection into the patent documents or manual classification to refine the identified 

technology domains. The list of technology domains partially differs from the classifications produced by 

other studies. The comparison with the results previously obtained by Simons and Sandersons (2011) is 

particularly interesting. The authors developed a classification of LED domains based on a database of 

patents which, although smaller in size, was built with the same keywords search strategy adopted for 

this paper. The automated IPC-based community detection analysis enables to detect technology 

domains related to different applications of LED (e.g. LED technologies for watches, signalling, medical 

and games technologies, etc.), which are not accounted for by Simons and Sanderson. Conversely, the 

classification developed by those researchers is more oriented at providing a finer-grained distinction of 

different fundamental technologies related to LED (especially on semiconductors). This more detailed 

classification can be achieved by the community analysis too, if the resolution parameter is increased.  
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Overall, being entirely data-driven, based on the co-occurrence of IPC codes, the community detection 

methodology provides a more agnostic classification of the technology, but at the same time allows 

flexibility in the choice of the level of detail: in fact, the algorithm can be adjusted to detect either more 

general communities, or smaller and more specific domains. On these grounds, this method is 

considered particularly suitable when there is the need to study the evolution of complex technologies, 

such as GPT or other multi-purpose technologies, which evolved over a long time period and across 

several multiple directions that may not be entirely known ex-ante.  

Finally, the methodology has two additional advantages worth highlighting. First, it is efficient: by 

clustering IPC codes included in patent applications, rather than clustering patent applications based on 

their technology codes, it requires much less computing power. Second, it is easy-to-use: the most 

common community detection algorithms today are embedded in different applications, which means 

that the analyst does not require particularly advanced data science skills. 

Two possible avenues for future research can be envisaged. On the one hand, the methodology can be 

further explored and tested with other technologies, and its results can be compared with alternative 

methods. Community detection can be especially useful when the focus is on multi-purpose or GPT 

technologies, or when the technology landscape to investigate is not pre-defined around an individual 

technological field (in line with recent research by Nomaler and Verspagen, 2019). When the scope of 

analysis is very broad and the interest is in looking at a multitude of technological trajectories and a very 

large set of patents, community detection analysis can help discover the different technology fields 

“hidden” in the patent landscape. On the other hand, the results obtained on the LED technology can be 

brought forward and used for a deeper analysis of LED. The relatedness of different domains to each 

other can be examined more in-depth. How the technology evolution moved from one technology 

domain to another in the course of its changing process, how different domains interacted with each 

other to push the technology advancement forward, how companies positioned in the landscape, which 

technology domains they occupied, are all other interesting questions for future study.  

  

  



37 

 

Appendixes 

A.I Patent search strategy 

The identification of LED-related patents relied on the search of a number of keyword in the patents’ title 

and /or abstract. The keyword selection was based on Simons and Sanderson (2011). The search required 

whole words to be identified separated by spaces or non-alphanumeric characters such as punctuation 

marks. An “(s)” or “(n)” denotes an optional s or n, and an asterisk allows any characters. Searches were 

not case-sensitive.  

The following English-language keyword strings were used to search titles and/or abstract (all with a 

space both before and after): “light emitting diode(s)”, “light-emitting diode(s)”, “LED(s)”, “OLED(s)”, 

“PLED(s)”, “L.E.D.(s)”, “LED-based”, “semiconductor light emitting”, “semiconductor light-emitting”, 

“semiconductor light emission”, “semiconductor lighting”, “semiconductor lumin*”, “solid state lighting”, 

“solid-state lighting”, “solid state light(s)”, “solid-state light(s)”, “solid state lamp(s)”, “solid-state lamp(s)”, 

“micro-LED(s)”, “light emitting die(s)”, “light-emitting die(s)”, “luminescent diode(s)”, “light 

emittingdiode(s)”, “lightemitting diode(s)”, “lightemittingdiode(s)”.  

The following basic non-English-language keyword strings were also used: "lichtemittierende Diode(n)", 

"Leuchtdiode(n)", "diode(s) luminescente(s)", "diodo(s) electroluminoso(s)", "diodo(s) luminoso(s)", 

"diodo luminescente", "diodi luminescenti", "luminescente diodo", "luminescenti diodi", "diodos 

emissores de luz", "diodo(s) emitindo-se claro(s)". 

The resulting database was then cleaned by removing the patent applications where the word “LED” used 

in combination with the following prepositions/verbs, and no other relevant keywords appear in either 

the Title or Abstract: " led to "," led in "," led by "," led with "," led up to "," led on "," led into "," led onto 

"," led from "," led over "," led through "," is led "," are led "," be led "," being led "," LED TO "," LED IN "," 

LED BY "," LED WITH "," LED UP TO "," LED ON "," LED INTO "," LED ONTO "," LED FROM "," LED OVER "," 

LED THROUGH "," IS LED "," BE LED "," ARE LED "," BEING LED ". The software STATA was used to perform 

this cleaning process. Since STATA is case-sensitive, it allowed the word “led” (more likely used as a verb) 

to be distinguished from “LED” (more likely the acronym of Light-Emitting Diode). 
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A.II Results of the community analysis of IPC codes 

Table 13. Table 1. Results of the community analysis of IPC codes with Louvain and VOS methods at different resolution limits (0.2 – 1.75) 
LABE
L IPC 

IPC 
CODE 

MULTI-
LEVEL 
LOUVAIN 
COMMUNI
TIES (100, 
RES=0.500
000, 
Q=0.63017
2, NC=3) 

MULTI-LEVEL 
VOS CLUSTERING 
(100, 
RES=0.500000, 
VOS=0.65614096
12, NC=3) 

MULTI-
LEVEL 
LOUVAIN 
COMMUNITI
ES (100, 
RES=0.75000
0, 
Q=0.536326, 
NC=6) 

MULTI-LEVEL 
VOS CLUSTERING 
(100, 
RES=0.750000, 
VOS=0.54653952
78, NC=4) 

MULTI-
LEVEL 
LOUVAIN 
COMMUNITI
ES (100, 
RES=1.00000
0, 
Q=0.478736, 
NC=7) 

MULTI-LEVEL 
VOS CLUSTERING 
(100, 
RES=1.000000, 
VOS=0.47401071
47, NC=7) 

MULTI-
LEVEL 
LOUVAIN 
COMMUNITI
ES (100, 
RES=1.25000
0, 
Q=0.438830, 
NC=8) 

MULTI-LEVEL 
VOS CLUSTERING 
(100, 
RES=1.250000, 
VOS=0.43615842
47, NC=8) 

MULTI-
LEVEL 
LOUVAIN 
COMMUNITI
ES (100, 
RES=1.50000
0, 
Q=0.400210, 
NC=9) 

MULTI-LEVEL 
VOS CLUSTERING 
(100, 
RES=1.500000, 
VOS=0.40526664
58, NC=10) 

MULTI-
LEVEL 
LOUVAIN 
COMMUNITI
ES (100, 
RES=1.75000
0, 
Q=0.367501, 
NC=10) 

MULTI-LEVEL 
VOS CLUSTERING 
(100, 
RES=1.750000, 
VOS=0.38096491
59, NC=12) 

V1 F21V 1 1 1 1 1 1 1 1 1 1 1 1 

V2 F21Y 1 1 1 1 1 1 1 1 1 1 1 1 

V3 F21S 1 1 1 1 1 1 1 1 1 1 1 1 

V4 H01L 1 2 2 2 2 2 2 2 2 2 2 2 

V5 H05B 1 3 1 2 1 3 1 3 2 3 2 3 

V6 F21W 1 1 1 1 1 1 1 1 1 1 1 1 

V7 F21K 1 1 1 1 1 1 1 1 1 1 1 1 

V8 G09F 2 3 2 2 2 4 2 4 2 4 3 4 

V9 G09G 2 3 2 2 2 4 2 4 2 4 3 4 

V10 G02F 2 2 2 2 2 4 2 4 2 4 3 4 

V11 G02B 2 2 2 2 2 4 2 4 3 4 4 4 

V12 H04N 2 2 2 3 2 4 2 4 3 5 4 5 

V13 G06F 2 3 3 4 2 5 3 4 4 6 5 6 

V14 G01R 2 3 3 4 3 3 4 3 5 3 6 3 

V15 H05K 2 3 2 2 2 2 2 2 2 2 3 4 

V16 F21L 1 3 1 4 1 5 1 5 1 7 1 1 

V17 B60Q 2 3 3 4 4 6 5 6 6 8 7 7 

V18 G01N 2 3 3 4 4 6 5 6 6 8 7 8 

V19 G03B 2 2 2 3 2 4 2 4 3 5 4 5 

V20 H02J 2 3 3 4 3 3 4 3 5 3 6 3 

V21 A61B 2 3 4 4 5 5 6 5 7 7 8 9 

V22 G08B 2 3 3 4 3 5 3 5 4 7 6 10 

V23 C09K 3 2 5 2 6 2 7 2 2 2 2 2 

V24 B41J 2 2 2 3 2 4 2 4 3 5 4 5 

V25 H01S 2 2 2 2 2 2 2 2 2 2 2 2 

V26 H04B 2 3 3 4 3 5 3 7 4 6 5 6 

V27 H01R 2 3 3 4 3 3 4 3 5 3 6 3 

V28 A63F 2 3 3 4 5 5 3 5 4 7 5 9 

V29 G03G 2 2 2 3 2 4 2 4 3 5 4 5 

V30 A01G 2 3 3 4 5 5 6 5 7 7 8 11 

V31 H04M 2 3 3 4 3 5 3 7 4 6 5 6 

V32 G08G 2 3 3 4 3 5 5 5 6 9 6 10 

V33 G06K 2 3 3 4 2 5 3 4 3 5 4 5 

V34 H01H 2 3 3 4 3 3 4 3 5 3 6 3 

V35 H02M 2 3 3 4 3 3 4 3 5 3 6 3 

V36 G09B 2 3 3 4 5 5 6 5 7 7 8 9 

V37 G05B 2 3 3 4 3 5 3 6 4 8 5 11 
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V38 B60R 2 3 3 4 4 6 5 6 6 8 7 7 

V39 H01J 3 2 5 2 6 2 7 2 2 2 2 2 

V40 A61N 2 3 4 4 5 5 6 5 7 7 8 9 

V41 E01F 2 3 3 4 3 5 4 5 5 9 6 10 

V42 H03K 2 3 3 4 3 3 4 3 5 3 6 3 

V43 G01B 2 3 3 4 4 6 5 6 6 8 7 8 

V44 G01D 2 3 3 4 4 6 5 6 6 8 7 7 

V45 G01J 2 3 3 4 4 6 5 6 6 8 7 8 

V46 A01M 2 3 3 4 5 5 6 5 7 7 8 11 

V47 A01K 2 3 3 4 5 5 6 5 7 7 8 11 

V48 A47G 2 3 3 4 5 5 6 5 7 7 8 11 

V49 H02H 2 3 3 4 3 3 4 3 5 3 6 3 

V50 C08L 3 2 5 2 6 2 7 2 8 2 9 2 

V51 G08C 2 3 3 4 3 5 3 6 4 8 5 6 

V52 A61L 2 3 3 4 5 5 6 5 7 7 8 11 

V53 H04L 2 3 3 4 3 5 3 7 4 6 5 6 

V54 A63B 2 3 3 4 5 5 6 5 7 7 8 9 

V55 F24F 2 3 3 4 5 5 6 5 7 7 8 11 

V56 A47B 2 3 3 4 5 5 6 5 7 7 8 11 

V57 C07D 3 2 5 2 6 2 7 2 2 2 2 2 

V58 H04R 2 3 3 4 3 5 3 7 4 6 5 6 

V59 G11B 2 3 3 4 2 5 3 7 4 6 5 6 

V60 G01M 2 3 3 4 4 6 5 6 6 8 7 8 

V61 C08K 3 2 5 2 6 2 7 2 8 2 9 2 

V62 B62J 2 3 3 4 4 6 5 6 6 8 7 7 

V63 G05D 2 3 3 4 4 5 5 6 6 8 7 11 

V64 G01C 2 3 3 4 4 6 5 6 6 8 7 8 

V65 A61M 2 3 4 4 5 5 6 5 7 7 8 9 

V66 H04Q 2 3 3 4 3 5 3 7 4 6 5 6 

V67 G06T 2 3 2 3 2 4 2 4 3 5 4 5 

V68 A63H 2 3 3 4 5 5 6 5 7 7 8 9 

V69 B29C 3 2 5 2 6 2 7 2 8 2 9 2 

V70 G01S 2 3 3 4 4 6 5 6 6 8 7 8 

V71 G05F 2 3 3 4 3 3 4 3 5 3 6 3 

V72 H04W 2 3 3 4 3 5 3 7 4 6 5 6 

V73 H02S 2 3 3 4 3 5 4 5 5 9 6 10 

V74 C08G 3 2 5 2 6 2 7 2 8 2 9 2 

V75 E04H 2 3 3 4 3 5 4 5 5 9 6 10 

V76 F25D 2 3 3 4 5 5 6 5 7 7 8 11 

V77 A45B 2 3 3 4 5 5 6 5 7 7 8 9 

V78 B60K 2 3 3 4 4 6 5 6 6 8 7 7 

V79 C23C 3 2 5 2 6 2 7 2 2 2 2 2 

V80 A45C 2 3 3 4 3 5 6 5 7 7 8 11 

V81 E05B 2 3 3 4 3 5 3 5 4 7 5 7 

V82 B23K 2 2 2 2 2 2 2 2 2 2 3 2 

V83 B32B 3 2 5 2 6 2 7 2 8 2 9 2 

V84 G07C 2 3 3 4 3 5 3 5 4 7 5 7 

V85 A61H 2 3 4 4 5 5 6 5 7 7 8 9 

V86 A41D 2 3 3 4 5 5 6 5 7 7 8 9 

V87 G04G 2 3 6 4 7 7 8 8 9 10 10 12 

V88 G01F 2 3 3 4 4 5 5 6 6 8 7 11 
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V89 G01K 2 3 3 4 4 5 5 6 6 8 7 11 

V90 B65D 2 3 3 4 5 5 6 5 7 7 8 11 

V91 G07F 2 3 3 4 3 5 3 5 4 7 5 9 

V92 G06Q 2 3 3 4 3 5 3 5 4 7 5 9 

V93 H01M 2 3 3 4 3 3 4 3 5 3 6 3 

V94 G04B 2 3 6 4 7 7 8 8 9 10 10 12 

V95 A47F 2 3 3 4 5 5 6 5 7 7 8 11 

V96 E04F 2 3 3 4 3 5 4 5 5 9 6 10 

V97 C09D 3 2 5 2 6 2 7 2 8 2 9 2 

V98 A45D 2 3 4 4 5 5 6 5 7 7 8 11 

V99 G03F 3 2 5 2 6 2 7 2 8 2 9 2 

V100 H02B 2 3 3 4 3 3 4 3 5 3 6 3 

Note: Clustering run in Pajek. For both the Louvain and VOS method, we used the standard clustering parameters, namely: Number of Restarts: 100; Maximum Number 

of Iterations in each Restart: 20; Maximum Number of Levels in each Iteration: 20, Maximum Number of Repetitions in each Level: 50.  
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Table 14. Table 2. Results of the community analysis of IPC codes with Louvain and VOS methods at different resolution limits (2 - 3.5) 
LABEL 
IPC 

IPC 
CODE 

MULTI-
LEVEL 
LOUVAIN 
COMMUN
ITIES (100, 
RES=2.000
000, 
Q=0.34073
3, NC=14) 

MULTI-LEVEL 
VOS 
CLUSTERING 
(100, 
RES=2.000000
, 
VOS=0.36296
26144, NC=12) 

MULTI-
LEVEL 
LOUVAIN 
COMMUN
ITIES (100, 
RES=2.250
000, 
Q=0.31691
3, NC=14) 

MULTI-LEVEL 
VOS 
CLUSTERING 
(100, 
RES=2.250000
, 
VOS=0.34588
21204, NC=14) 

MULTI-
LEVEL 
LOUVAIN 
COMMUN
ITIES (100, 
RES=2.500
000, 
Q=0.29460
6, NC=15) 

MULTI-LEVEL 
VOS 
CLUSTERING 
(100, 
RES=2.500000
, 
VOS=0.32959
14061, NC=15) 

MULTI-
LEVEL 
LOUVAIN 
COMMUN
ITIES (100, 
RES=2.750
000, 
Q=0.27094
2, NC=17) 

MULTI-LEVEL 
VOS 
CLUSTERING 
(100, 
RES=2.750000
, 
VOS=0.31479
72153, NC=18) 

MULTI-
LEVEL 
LOUVAIN 
COMMUN
ITIES (100, 
RES=3.000
000, 
Q=0.24905
5, NC=18) 

MULTI-LEVEL 
VOS 
CLUSTERING 
(100, 
RES=3.000000
, 
VOS=0.30151
73093, NC=22) 

MULTI-
LEVEL 
LOUVAIN 
COMMUN
ITIES (100, 
RES=3.250
000, 
Q=0.22643
2, NC=21) 

MULTI-LEVEL 
VOS 
CLUSTERING 
(100, 
RES=3.250000
, 
VOS=0.29158
01813, NC=25) 

MULTI-
LEVEL 
LOUVAIN 
COMMUN
ITIES 1 
(100, 
RES=3.500
000, 
Q=0.20609
2, NC=23) 

MULTI-LEVEL 
VOS 
CLUSTERING 
(100, 
RES=3.500000
, 
VOS=0.28381
07363, NC=26) 

V1 F21V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

V2 F21Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

V3 F21S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

V4 H01L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

V5 H05B 2 3 3 3 2 3 3 3 3 3 3 3 3 3 

V6 F21W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

V7 F21K 1 1 1 1 1 1 1 1 1 1 1 4 1 4 

V8 G09F 3 4 4 4 3 4 4 4 4 4 4 5 4 5 

V9 G09G 3 4 4 4 3 4 4 4 4 4 4 5 4 6 

V10 G02F 3 4 4 4 3 4 4 4 4 4 5 5 5 6 

V11 G02B 4 4 5 4 4 4 4 5 4 4 5 5 5 6 

V12 H04N 4 5 5 5 4 5 5 5 5 5 6 6 6 7 

V13 G06F 5 6 6 6 5 6 6 6 6 6 7 7 7 8 

V14 G01R 6 3 7 7 6 7 7 7 7 7 8 8 8 9 

V15 H05K 3 4 4 4 3 4 4 4 4 8 4 9 4 5 

V16 F21L 1 1 8 1 7 8 8 8 8 9 9 10 9 10 

V17 B60Q 7 7 9 8 8 9 9 9 9 10 10 11 10 11 

V18 G01N 8 8 7 9 9 10 10 10 10 7 8 8 8 9 

V19 G03B 4 5 5 5 4 5 5 5 5 5 6 6 6 7 

V20 H02J 6 3 8 7 6 7 7 7 7 9 11 10 9 10 

V21 A61B 9 9 10 10 10 11 11 11 11 11 12 12 11 12 

V22 G08B 10 10 8 11 11 12 12 12 12 12 13 13 12 13 

V23 C09K 2 2 2 2 2 2 2 13 2 13 2 14 2 14 

V24 B41J 4 5 5 5 4 5 5 5 5 5 6 6 6 7 

V25 H01S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

V26 H04B 11 6 11 12 12 13 13 14 13 14 14 15 13 15 

V27 H01R 6 3 3 7 6 7 7 7 7 8 15 9 14 5 

V28 A63F 5 9 6 6 5 6 6 15 6 15 16 16 15 16 

V29 G03G 4 5 5 5 4 5 5 5 5 5 6 6 6 7 

V30 A01G 12 11 12 13 13 14 14 16 14 16 17 17 16 17 

V31 H04M 11 6 11 12 12 13 13 14 13 14 14 15 13 15 

V32 G08G 10 10 8 11 11 12 12 12 12 17 11 18 17 18 

V33 G06K 5 5 6 6 5 6 6 6 6 5 7 7 18 8 

V34 H01H 6 3 3 7 6 7 7 7 7 18 15 19 14 19 

V35 H02M 6 3 3 7 6 7 7 7 7 18 15 19 14 19 

V36 G09B 9 9 10 6 10 6 11 15 11 15 16 16 15 16 

V37 G05B 12 11 12 13 13 14 15 16 15 19 18 20 19 20 

V38 B60R 7 7 9 8 8 9 9 9 9 10 10 11 10 11 

V39 H01J 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

V40 A61N 9 9 10 10 10 11 11 11 11 11 12 12 11 12 
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V41 E01F 10 10 8 11 11 12 12 12 12 17 11 18 17 18 

V42 H03K 6 3 3 7 6 7 7 7 7 18 15 19 14 19 

V43 G01B 8 8 7 9 9 10 10 10 10 20 19 21 20 21 

V44 G01D 7 7 9 8 8 9 9 9 9 10 10 11 10 11 

V45 G01J 8 8 7 9 9 10 10 10 10 7 8 8 8 9 

V46 A01M 12 11 12 13 13 14 14 16 14 16 17 17 16 17 

V47 A01K 12 11 12 13 13 14 14 16 14 16 17 17 16 17 

V48 A47G 9 11 12 13 13 11 14 11 14 16 17 22 16 22 

V49 H02H 6 3 3 7 6 7 7 7 7 18 15 19 14 19 

V50 C08L 13 2 13 2 14 2 16 17 16 21 20 23 21 23 

V51 G08C 11 6 11 12 12 13 13 14 13 19 14 20 13 20 

V52 A61L 9 11 12 13 13 14 14 16 14 16 17 22 16 22 

V53 H04L 11 6 11 12 12 13 13 14 13 14 14 15 13 15 

V54 A63B 9 9 10 6 10 6 11 15 11 15 16 16 15 16 

V55 F24F 9 11 12 13 13 14 14 16 14 16 17 22 16 22 

V56 A47B 9 11 12 13 13 14 14 16 14 16 17 22 16 22 

V57 C07D 2 2 2 2 2 2 2 13 2 13 2 14 2 14 

V58 H04R 11 6 11 12 12 13 13 14 13 14 14 24 13 24 

V59 G11B 5 6 6 12 5 13 6 6 6 14 7 24 7 24 

V60 G01M 8 8 7 9 9 10 10 10 10 7 8 8 8 9 

V61 C08K 13 2 13 2 14 2 16 17 16 21 20 23 21 23 

V62 B62J 7 7 9 8 8 9 9 9 9 10 10 11 10 11 

V63 G05D 12 11 12 13 13 14 15 16 15 19 18 20 19 20 

V64 G01C 8 8 7 9 9 10 10 10 10 20 19 21 20 21 

V65 A61M 9 9 10 10 10 11 11 11 11 11 12 12 11 12 

V66 H04Q 11 6 11 12 12 13 13 14 13 14 14 15 13 15 

V67 G06T 4 5 5 5 4 5 5 6 5 5 6 7 6 8 

V68 A63H 9 9 10 6 10 6 11 15 11 15 16 16 15 16 

V69 B29C 13 2 13 2 14 2 16 2 16 2 20 2 21 2 

V70 G01S 8 8 7 9 9 10 10 10 10 20 19 21 20 21 

V71 G05F 6 3 3 7 6 7 7 7 7 18 15 19 14 19 

V72 H04W 11 6 11 12 12 13 13 14 13 14 14 15 13 15 

V73 H02S 10 10 8 11 11 12 12 12 12 17 11 18 17 18 

V74 C08G 13 2 13 2 14 2 16 17 16 21 20 23 21 23 

V75 E04H 10 10 8 11 11 12 12 12 12 17 11 18 17 18 

V76 F25D 9 11 12 13 13 14 14 16 14 16 17 22 16 22 

V77 A45B 9 9 10 6 10 6 11 15 11 15 16 16 15 16 

V78 B60K 7 7 9 8 8 9 9 9 9 10 10 11 10 11 

V79 C23C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

V80 A45C 9 11 8 13 10 11 11 11 11 16 13 22 12 22 

V81 E05B 5 7 6 6 5 6 6 15 6 15 7 16 18 25 

V82 B23K 8 2 2 2 9 2 2 2 17 2 19 2 22 2 

V83 B32B 13 2 13 2 14 2 16 2 16 2 20 2 21 2 

V84 G07C 5 7 6 6 5 6 6 15 6 15 7 16 18 25 

V85 A61H 9 9 10 10 10 11 11 11 11 11 12 12 11 12 

V86 A41D 9 9 10 10 10 11 11 11 11 11 13 12 12 12 

V87 G04G 14 12 14 14 15 15 17 18 18 22 21 25 23 26 

V88 G01F 8 11 12 13 13 11 9 11 15 19 18 20 19 20 

V89 G01K 8 11 12 13 13 11 9 11 15 19 18 20 19 20 

V90 B65D 9 11 12 13 13 11 14 11 14 16 17 22 16 22 

V91 G07F 5 9 6 6 5 6 6 15 6 15 7 16 18 16 
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V92 G06Q 5 9 6 6 5 6 6 15 6 15 7 16 18 16 

V93 H01M 6 3 8 7 6 7 7 7 7 9 11 10 9 10 

V94 G04B 14 12 14 14 15 15 17 18 18 22 21 25 23 26 

V95 A47F 9 11 12 13 13 14 14 16 14 16 17 22 16 22 

V96 E04F 10 10 8 11 11 12 12 12 12 17 11 18 17 18 

V97 C09D 13 2 13 2 14 2 16 2 16 2 20 23 21 23 

V98 A45D 9 11 10 13 10 11 11 11 11 16 12 22 11 22 

V99 G03F 13 2 13 2 14 2 16 2 16 2 20 2 22 2 

V100 H02B 6 3 3 7 6 7 7 7 7 18 15 19 14 19 

Note: Clustering run in Pajek. For both the Louvain and VOS method, we used the standard clustering parameters, namely: Number of Restarts: 100; Maximum Number of 

Iterations in each Restart: 20; Maximum Number of Levels in each Iteration: 20, Maximum Number of Repetitions in each Level: 50.  
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A.III Relation between the Louvain and VOS clustering methods 

 Cramers’ V index at different resolution levels 

 

 Rajski indexes at different resolution levels 

 

 Adjusted Rand Index (ARI) at different resolution levels 
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